DFT investigation of CO2 hydrogenation to methanol over Ir-doped Cu surface

被引:13
|
作者
Liu, Lingna [1 ]
Wang, Chao [1 ]
Xue, Fan [1 ]
Li, Jiawei [1 ]
Zhang, Hui [1 ]
Lu, Shuwei [1 ]
Su, Xuanyue [1 ]
Cao, Baowei [1 ]
Huo, Wenlan [1 ]
Fang, Tao [2 ]
机构
[1] Yulin Univ, Sch Chem & Chem Engn, Shaanxi Key Lab Low Metamorph Coal Clean Utilizat, Yulin 719000, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Dept Chem Engn, Xian 710049, Peoples R China
来源
MOLECULAR CATALYSIS | 2022年 / 528卷
基金
中国国家自然科学基金;
关键词
DFT calculation; Ir-doped Cu catalyst; Methanol; Hydrogenation; SELECTIVE HYDROGENATION; CU(111) SURFACES; CARBON-DIOXIDE; CATALYSTS; PD; CU(100); ELECTROREDUCTION; CONVERSION; ETHANOL;
D O I
10.1016/j.mcat.2022.112460
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, density functional theory (DFT) calculations have been employed to investigate the adsorption properties and reaction process of CO2 hydrogenation to CH3OH on Cu-based catalyst surface with different Ir doping ratios. During the reverse water-gas shift (RWGS) pathway, CO2 firstly hydrogenates to trans-COOH. Next, trans-COOH isomerizes to cis-COOH, which will dissociate to CO+OH subsequently. Then CO(2 )will consecutively hydrogenate to HCO, H2CO, H3CO and the target product H3COH. The results show that the formation of CO+OH is the rate-determining step for Ir3Cu6(111), while the rate-determining step for Ir6Cu3(111) and IrMLCu(111) is the formation of HCO, where the energy barriers to be overcome are 1.21 eV, 1.35 eV and 1.34 eV, respectively. In addition, the dissociation of H(2 )is almost spontaneous on IrCu(111) surfaces, which will provide a large amount of H source for the reaction. Overall, this work shows that the change of Ir doping ratio on the surface of Cu catalyst has an pronounced effect on the hydrogenation of CO2 to methanol, especially on IrMLCu(111) surface. Our results are helpful to provide some references for the design and modification of synthetic noble metal Ir doped Cu-based catalyst.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Catalytic systems for hydrogenation of CO2 to methanol
    Tedeeva, Marina A.
    Kustov, Alexander L.
    Batkin, Alexander M.
    Garifullina, Cholpan
    Zalyatdinov, Albert A.
    Yang, Dan
    Dai, Yihu
    Yang, Yanhui
    Kustov, Leonid M.
    MOLECULAR CATALYSIS, 2024, 566
  • [32] An Insight into Synergistic Metal-Oxide Interaction in CO2 Hydrogenation to Methanol over Cu/ZnO/ZrO2
    Chang, Xiao
    Zi, Xiaohui
    Li, Jing
    Liu, Fengdong
    Han, Xiaoyu
    Chen, Jiyi
    Hao, Ziwen
    Zhang, Heng
    Zhang, Zhenmei
    Gao, Pengju
    Li, Maoshuai
    Lv, Jing
    Ma, Xinbin
    CATALYSTS, 2023, 13 (10)
  • [33] Transient In situ DRIFTS Investigation of CO2 Hydrogenation to Methanol over Unsupported CuGa Catalysts
    Zhang, Shuanglin
    Shao, Yan
    Chen, Huanhao
    Fan, Xiaolei
    CHEMCATCHEM, 2024, 16 (16)
  • [34] Coordination Environment Dependent Surface Cu State for CO2 Hydrogenation to Methanol
    Song, Mengyang
    Liu, Tangkang
    Hong, Xinlin
    Liu, Guoliang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (32) : 12135 - 12144
  • [35] CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method
    Dong, Xiaosu
    Li, Feng
    Zhao, Ning
    Xiao, Fukui
    Wang, Junwei
    Tan, Yisheng
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 191 : 8 - 17
  • [36] CO2 Hydrogenation to Methanol over Ce and Zr Containing UiO-66 and Cu/UiO-66
    Stawowy, Michalina
    Ciesielski, Radoslaw
    Maniecki, Tomasz
    Matus, Krzysztof
    Luzny, Rafal
    Trawczynski, Janusz
    Silvestre-Albero, Joaquin
    Lamacz, Agata
    CATALYSTS, 2020, 10 (01)
  • [37] Effect of Cu and Cs in the β-Mo2C System for CO2 Hydrogenation to Methanol
    Dongil, Ana Belen
    Zhang, Qi
    Pastor-Perez, Laura
    Ramirez-Reina, Tomas
    Guerrero-Ruiz, Antonio
    Rodriguez-Ramos, Inmaculada
    CATALYSTS, 2020, 10 (10) : 1 - 9
  • [38] Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts
    Hu, Bing
    Yin, Yazhi
    Liu, Guoliang
    Chen, Shengli
    Hong, Xinlin
    Tsang, Shik Chi Edman
    JOURNAL OF CATALYSIS, 2018, 359 : 17 - 26
  • [39] Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol
    Li, Congming
    Chen, Kuo
    Wang, Xiaoyue
    Xue, Nan
    Yang, Hengquan
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (05)
  • [40] A highly active and selective mesostructured Cu/AlCeO catalyst for CO2 hydrogenation to methanol
    Li, Shaozhong
    Wang, Yu
    Yang, Bin
    Guo, Limin
    APPLIED CATALYSIS A-GENERAL, 2019, 571 : 51 - 60