Defect correction method for viscoelastic fluid flows at high Weissenberg number

被引:25
作者
Ervin, VJ [1 ]
Lee, H [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
defect correction method; viscoelastic fluid; finite element method;
D O I
10.1002/num.20090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a defect correction method for the approximation of viscoelastic fluid flow. In the defect step, the constitutive equation is computed with an artificially reduced Weissenberg parameter for stability, and the resulting residual is corrected in the correction step. We prove the convergence of the defect correction method and derive an error estimate for the Oseen-viscoelastic model problem. The derived theoretical results are supported by numerical tests for both the Oseen-viscoelastic problem and the John son-Segalman model problem. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:145 / 164
页数:20
相关论文
共 18 条
[1]  
[Anonymous], 1998, THEORY APPL SOLID FL
[2]   IMPACT OF THE CONSTITUTIVE EQUATION AND SINGULARITY ON THE CALCULATION OF STICK SLIP-FLOW - THE MODIFIED UPPER-CONVECTED MAXWELL MODEL (MUCM) [J].
APELIAN, MR ;
ARMSTRONG, RC ;
BROWN, RA .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1988, 27 (03) :299-321
[3]  
Axelsson O., 1990, RAIRO-MATH MODEL NUM, V24, P423
[4]  
Baaijens FPT, 1998, J NON-NEWTON FLUID, V79, P361, DOI 10.1016/S0377-0257(98)00122-0
[5]   FINITE-ELEMENT APPROXIMATION OF VISCOELASTIC FLUID-FLOW - EXISTENCE OF APPROXIMATE SOLUTIONS AND ERROR-BOUNDS .1. DISCONTINUOUS CONSTRAINTS [J].
BARANGER, J ;
SANDRI, D .
NUMERISCHE MATHEMATIK, 1992, 63 (01) :13-27
[6]  
BHMER K, 1984, DEFECT CORRECTION ME
[7]  
Brown R. A., 1993, Theoretical and Computational Fluid Dynamics, V5, P77, DOI 10.1007/BF00311812
[8]   Adaptive defect-correction methods for viscous incompressible flow problems [J].
Ervin, VJ ;
Layton, WJ ;
Maubach, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1165-1185
[9]  
ERVIN VJ, IN PRESS J NONNEWTON
[10]  
HEMKER PW, 1982, LECT NOTES MATH, V960, P485