P680+• reduction kinetics and redox transition probability of the water oxidizing complex as a function of pH and H D isotope exchange in spinach thylakoids

被引:89
作者
Christen, G [1 ]
Seeliger, A [1 ]
Renger, G [1 ]
机构
[1] Tech Univ Berlin, Max Volmer Inst Biophys Chem & Biochem, D-10623 Berlin, Germany
关键词
D O I
10.1021/bi9827520
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The rise of fluorescence as an indicator for P680(+.) reduction by Y-Z and the period-four oscillation of oxygen yield induced by a train of saturating flashes were measured in dark-adapted thylakoids as a function of pH in the absence of exogenous electron accepters. The results reveal that: (i) the average amplitude of the nanosecond kinetics and the average of the maximum fluorescence attained at 100 mu s after the flash in the acidic range decrease with decreasing pH; (ii) the oxygen yield exhibits a pronounced period-four oscillation at pH 6.5 and higher damping at both pH 5.0 and pH 8.0; (iii) the probability of misses in the S-i-state transitions of the water oxidizing complex is affected characteristically when exchangeable protons are replaced by deuterons [at pH <6.5, the ratio alpha(D)/alpha(H) is larger than 1 whereas at pH >7.0 values of <1 are observed]. The results are discussed within the framework of a combined mechanism for P680(+.) reduction where the nanosecond kinetics reflect an electron transfer coupled with a "rocket-type" proton shift within a hydrogen bridge from Y-Z to a nearby basic group, X [Eckert, H.-J., and Renger, G. (1988) FEBS Lett. 236, 425-431], and subsequent relaxations within a network of hydrogen bonds. It is concluded that in the acidic region the hydrogen bond between Y-Z and X (most likely His 190 of polypeptide D1) is interrupted either by direct protonation of X or by conformational changes due to acid-induced Ca2+ release. This gives rise to a decreased P680(+.) reduction by nanosecond kinetics and an increase of dissipative P680(+.)Q(A)(-.) recombination at low pH. A different mechanism is responsible for the almost invariant amplitude of nanosecond kinetics and increase of alpha in the alkaline region.
引用
收藏
页码:6082 / 6092
页数:11
相关论文
共 102 条
[1]   Function of tyrosine Z in water oxidation by photosystem II:: Electrostatical promotor instead of hydrogen abstractor [J].
Ahlbrink, R ;
Haumann, M ;
Cherepanov, D ;
Bögershausen, O ;
Mulkidjanian, A ;
Junge, W .
BIOCHEMISTRY, 1998, 37 (04) :1131-1142
[2]   WATER OXIDATION IN PHOTOSYSTEM .2. FROM RADICAL CHEMISTRY TO MULTIELECTRON CHEMISTRY [J].
BABCOCK, GT ;
BARRY, BA ;
DEBUS, RJ ;
HOGANSON, CW ;
ATAMIAN, M ;
MCINTOSH, L ;
SITHOLE, I ;
YOCUM, CF .
BIOCHEMISTRY, 1989, 28 (25) :9557-9565
[3]   KINETIC-STUDIES ON THE STABILIZATION OF THE PRIMARY RADICAL PAIR P680(+) PHEO(-) IN DIFFERENT PHOTOSYSTEM-II PREPARATIONS FROM HIGHER-PLANTS [J].
BERNARDING, J ;
ECKERT, HJ ;
EICHLER, HJ ;
NAPIWOTZKI, A ;
RENGER, G .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1994, 59 (05) :566-573
[4]   ELECTROSTATIC CALCULATIONS OF AMINO-ACID TITRATION AND ELECTRON-TRANSFER, Q(A)(-)Q(B)-]Q(A)Q(B)(-), IN THE REACTION-CENTER [J].
BEROZA, P ;
FREDKIN, DR ;
OKAMURA, MY ;
FEHER, G .
BIOPHYSICAL JOURNAL, 1995, 68 (06) :2233-2250
[5]   Hydrogen bonding of redox-active tyrosine Z of photosystem II probed by FTIR difference spectroscopy [J].
Berthomieu, C ;
Hienerwadel, R ;
Boussac, A ;
Breton, J ;
Diner, BA .
BIOCHEMISTRY, 1998, 37 (30) :10547-10554
[6]   NANOSECOND REDUCTION KINETICS OF PHOTOOXIDIZED CHLOROPHYLL-ALPHA-II (P-680) IN SINGLE FLASHES AS A PROBE FOR THE ELECTRON PATHWAY, H+-RELEASE AND CHARGE ACCUMULATION IN THE O-2-EVOLVING COMPLEX [J].
BRETTEL, K ;
SCHLODDER, E ;
WITT, HT .
BIOCHIMICA ET BIOPHYSICA ACTA, 1984, 766 (02) :403-415
[8]   A new concept for the mechanism of action of chymotrypsin: The role of the low-barrier hydrogen bond [J].
Cassidy, CS ;
Lin, J ;
Frey, PA .
BIOCHEMISTRY, 1997, 36 (15) :4576-4584
[9]  
Christen G, 1997, PHOTOSYNTHETICA, V33, P529
[10]   On the origin of the '35-μs kinetics' of P680+. reduction in photosystem II with an intact water oxidising complex [J].
Christen, G ;
Reifarth, F ;
Renger, G .
FEBS LETTERS, 1998, 429 (01) :49-52