Quantum-Confined Electronic States Arising from the Moire Pattern of MoS2-WSe2 Heterobilayers

被引:101
作者
Pan, Yi [1 ,2 ]
Foelsch, Stefan [1 ]
Nie, Yifan [3 ]
Waters, Dacen [4 ]
Lin, Yu-Chuan [5 ,6 ]
Jariwala, Bhakti [5 ,6 ]
Zhang, Kehao [5 ,6 ]
Cho, Kyeongjae [3 ]
Robinson, Joshua A. [5 ,6 ]
Feenstra, Randall M. [4 ]
机构
[1] Paul Drude Inst Festkorperelekt, Hausvogteipl 5-7, D-10117 Berlin, Germany
[2] Xi An Jiao Tong Univ, Ctr Spintron & Quantum Syst, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Dallas, TX 75080 USA
[4] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[5] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[6] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
2D materials; heterostructures; transition metal dichalcogenides; scanning tunneling microscopy; scanning tunneling spectroscopy; SCANNING-TUNNELING-MICROSCOPY; HETEROSTRUCTURES; GRAPHENE; SURFACE; MOS2;
D O I
10.1021/acs.nanolett.7b05125
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A two-dimensional (2D) heterobilayer system consisting of MoS2 on WSe2, deposited on epitaxial graphene, is studied by scanning tunneling microscopy and spectroscopy at temperatures of 5 and 80 K. A moire pattern is observed, arising from lattice mismatch of 3.7% between the MoS2 and WSe2. Significant energy shifts are observed in tunneling spectra observed at the maxima of the moire corrugation, as compared with spectra obtained at corrugation minima, consistent with prior work. Furthermore, at the minima of the moire corrugation, sharp peaks in the spectra at energies near the band edges are observed for spectra acquired at 5 K The peaks correspond to discrete states that are confined within the moire unit cells. Conductance mapping is employed to reveal the detailed structure of the wave functions of the states. For measurements at 80 K, the sharp peaks in the spectra are absent, and conductance maps of the band edges reveal little structure.
引用
收藏
页码:1849 / 1855
页数:7
相关论文
共 40 条
[1]   Determination of band alignment in the single-layer MoS2/WSe2 heterojunction [J].
Chiu, Ming-Hui ;
Zhang, Chendong ;
Shiu, Hung-Wei ;
Chuu, Chih-Piao ;
Chen, Chang-Hsiao ;
Chang, Chih-Yuan S. ;
Chen, Chia-Hao ;
Chou, Mei-Yin ;
Shih, Chih-Kang ;
Li, Lain-Jong .
NATURE COMMUNICATIONS, 2015, 6
[2]   Spectroscopic Signatures for Interlayer Coupling in MoS2-WSe2 van der Waals Stacking [J].
Chiu, Ming-Hui ;
Li, Ming-Yang ;
Zhang, Wengjing ;
Hsu, Wei-Ting ;
Chang, Wen-Hao ;
Terrones, Mauricio ;
Terrones, Humberto ;
Li, Lain-Jong .
ACS NANO, 2014, 8 (09) :9649-9656
[3]   Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices [J].
Dean, C. R. ;
Wang, L. ;
Maher, P. ;
Forsythe, C. ;
Ghahari, F. ;
Gao, Y. ;
Katoch, J. ;
Ishigami, M. ;
Moon, P. ;
Koshino, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Shepard, K. L. ;
Hone, J. ;
Kim, P. .
NATURE, 2013, 497 (7451) :598-602
[4]   Controlling nucleation of monolayer WSe2 during metal-organic chemical vapor deposition growth [J].
Eichfeld, Sarah M. ;
Colon, Victor Oliveros ;
Nie, Yifan ;
Cho, Kyeongjae ;
Robinson, Joshua A. .
2D MATERIALS, 2016, 3 (02)
[5]   Semiconductor quantum dot qubits [J].
Eriksson, M. A. ;
Coppersmith, S. N. ;
Lagally, M. G. .
MRS BULLETIN, 2013, 38 (10) :794-801
[6]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425
[7]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[8]   Periodic overlayers and moire patterns: theoretical studies of geometric properties [J].
Hermann, Klaus .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (31)
[9]   Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy [J].
Hill, Heather M. ;
Rigosi, Albert F. ;
Rim, Kwang Taeg ;
Flynn, George W. ;
Heinz, Tony F. .
NANO LETTERS, 2016, 16 (08) :4831-4837
[10]  
Hong XP, 2014, NAT NANOTECHNOL, V9, P682, DOI [10.1038/nnano.2014.167, 10.1038/NNANO.2014.167]