Overexpression of StDREB2 Transcription Factor Enhances Drought Stress Tolerance in Cotton (Gossypium barbadense L.)

被引:59
|
作者
El-Esawi, Mohamed A. [1 ]
Alayafi, Aisha A. [2 ]
机构
[1] Tanta Univ, Fac Sci, Bot Dept, Tanta 31527, Egypt
[2] Univ Jeddah, Fac Sci, Biol Sci Dept, Jeddah 21577, Saudi Arabia
关键词
StDREB2; transgenic cotton; drought; antioxidants; osmolytes; genes expression; SALT TOLERANCE; IMPROVES DROUGHT; GENE; HEAT; ADAPTATION; EXPRESSION; PARAMETERS; GENOTYPES; SEEDLINGS; PROLINE;
D O I
10.3390/genes10020142
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Drought stress significantly restricts plant growth and crop productivity. Cotton is the most important textile fiber and oilseed crop worldwide, and its cultivation is affected by drought stress, particularly in dry regions. Improving cotton tolerance to drought stress using the advanced genetic engineering technologies is a promising strategy to maintain crop production and fiber quality and meet the increasing worldwide fiber and oil demand. Dehydration-responsive element binding (DREB) transcription factors play a main role in regulating stresses-tolerance pathways in plant. This study investigated whether potato DREB2 (StDREB2) overexpression can improve drought tolerance in cotton. StDREB2 transcription factor was isolated and overexpressed in cotton. Plant biomass, boll number, relative water content, soluble sugars content, soluble protein content, chlorophyll content, proline content, gas-exchange parameters, and antioxidants enzymes (POD, CAT, SOD, GST) activity of the StDREB2-overexpressing cotton plants were higher than those of wild type plants. By contrast, the contents of malondialdehyde, hydrogen peroxide and superoxide anion of StDREB2-overexpressing transgenic plants were significantly lower than that of the wild type plants. Moreover, the transgenic cotton lines revealed higher expression levels of antioxidant genes (SOD, CAT, POD, GST) and stress-tolerant genes (GhERF2, GhNAC3, GhRD22, GhDREB1A, GhDREB1B, GhDREB1C) compared to wild-type plants. Taken together, these findings showed that StDREB2 overexpression augments drought stress tolerance in cotton by inducing plant biomass, gas-exchange characteristics, reactive oxygen species (ROS) scavenging, antioxidant enzymes activities, osmolytes accumulation, and expression of stress-related genes. As a result, StDREB2 could be an important candidate gene for drought-tolerant cotton breeding.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Exploring ethyl methanesulfonate (EMS) treated cotton (Gossypium hirsutum L.) to improve drought tolerance
    Travis W. Witt
    Mauricio Ulloa
    Mathew G. Pelletier
    Venugopal Mendu
    Glen L. Ritchie
    Euphytica, 2018, 214
  • [42] Genetic Potential and Inheritance Pattern of Phenological Growth and Drought Tolerance in Cotton (Gossypium Hirsutum L.)
    Mahmood, Tahir
    Wang, Xiukang
    Ahmar, Sunny
    Abdullah, Muhammad
    Iqbal, Muhammad Shahid
    Rana, Rashid Mehmood
    Yasir, Muhammad
    Khalid, Shiguftah
    Javed, Talha
    Mora-Poblete, Freddy
    Chen, Jen-Tsung
    Shah, Muhammad Kausar Nawaz
    Du, Xiongming
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [43] Exploring ethyl methanesulfonate (EMS) treated cotton (Gossypium hirsutum L.) to improve drought tolerance
    Witt, Travis W.
    Ulloa, Mauricio
    Pelletier, Mathew G.
    Mendu, Venugopal
    Ritchie, Glen L.
    EUPHYTICA, 2018, 214 (07)
  • [44] Genotypic variation for drought tolerance in cotton (Gossypium hirsutum L.):: Leaf gas exchange and productivity
    Ullah, Ihsan
    Mehboob-ur-Rahman
    Ashraf, Muhammad
    Zafar, Yusuf
    FLORA, 2008, 203 (02) : 105 - 115
  • [45] ADAPTIVE REACTION OF COTTON ACCESSIONS OF G-hirsutum L. AND G-barbadense L. SPECIES TO DROUGHT STRESS
    Mammadova, Afet
    Aliyev, Ramiz
    Babayeva, Sevda
    Abbasov, Mehraj
    GENETIKA-BELGRADE, 2015, 47 (02): : 617 - 626
  • [46] Overexpression of zinc finger (GpZF) transcription factor promotes drought tolerance in grass pea (Lathyrus sativus L.)
    Parsa, Mitra
    Kashanchi, Mona
    Zeinali, Amineh
    Pourfakhraei, Elaheh
    SOUTH AFRICAN JOURNAL OF BOTANY, 2023, 153 : 178 - 187
  • [47] Characterization of Strubbelig-Receptor Family (SRF) Related to Drought and Heat Stress Tolerance in Upland Cotton (Gossypium hirsutum L.)
    Ahmad, Furqan
    Rehman, Shoaib Ur
    Rahman, Muhammad Habib Ur
    Ahmad, Saghir
    Khan, Zulqurnain
    AGRONOMY-BASEL, 2024, 14 (09):
  • [48] Expression studies of transcription factors under moisture stress in Cotton (Gossypium hirsutum L.)
    Yadav, S. A.
    Jadhav, M. P.
    Adiger, Sateesh
    Singh, Sonam
    Solanke, Amolkumar U.
    Katageri, I. S.
    Vamadevaiah, H. M.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2018, 78 (03) : 393 - 397
  • [49] Response and Tolerance Mechanism of Cotton Gossypium hirsutum L. to Elevated Temperature Stress: A Review
    Zahid, Kashif Rafiq
    Ali, Farhan
    Shah, Farooq
    Younas, Muhammad
    Shah, Tariq
    Shahwar, Durri
    Hassan, Waseem
    Ahmad, Zahoor
    Qi, Chao
    Lu, Yanli
    Iqbal, Amjad
    Wu, Wei
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [50] The durum wheat NAC transcription factor TtNAC2A enhances drought stress tolerance in Arabidopsis
    Mergby, Dhawya
    Hanin, Moez
    Saidi, Mohammed Najib
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 186