Non-negative Kernel Sparse Coding for the Analysis of Motion Data

被引:3
|
作者
Hosseini, Babak [1 ]
Huelsmann, Felix [1 ]
Botsch, Mario [1 ]
Hammer, Barbara [1 ]
机构
[1] Univ Bielefeld, CITEC Ctr Excellence, Bielefeld, Germany
关键词
Kernel sparse coding; Motion analysis; Classification; Interpretable models; Dynamic time warping; K-SVD; REPRESENTATION; ALGORITHM;
D O I
10.1007/978-3-319-44781-0_60
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We are interested in a decomposition of motion data into a sparse linear combination of base functions which enable efficient data processing. We combine two prominent frameworks: dynamic time warping (DTW), which offers particularly successful pairwise motion data comparison, and sparse coding (SC), which enables an automatic decomposition of vectorial data into a sparse linear combination of base vectors. We enhance SC via efficient kernelization which extends its application domain to general similarity data such as offered by DTW, and its restriction to non-negative linear representations of signals and base vectors in order to guarantee a meaningful dictionary. We also implemented the proposed method in a classification framework and evaluated its performance on various motion capture benchmark data sets.
引用
收藏
页码:506 / 514
页数:9
相关论文
共 50 条
  • [41] Hyperspectral remote sensing data classification method based on sparse non-negative least-squares coding
    Qi Y.
    Yang L.
    Huo Y.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2016, 47 (07): : 332 - 337
  • [42] Non-negative and sparse spectral clustering
    Lu, Hongtao
    Fu, Zhenyong
    Shu, Xin
    PATTERN RECOGNITION, 2014, 47 (01) : 418 - 426
  • [43] DeepMP for Non-Negative Sparse Decomposition
    Voulgaris, Konstantinos A.
    Davies, Mike E.
    Yaghoobi, Mehrdad
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2035 - 2039
  • [44] Asymptotic Properties of Asymmetric Kernel Estimators for Non-Negative andCensored Data
    Ghettab, S.
    Guessoum, Z.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025, 54 (08) : 2506 - 2506
  • [45] Asymptotic properties of asymmetric kernel estimators for non-negative and censored data
    Ghettab, Sarah
    Guessoum, Zohra
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 53 (08) : 2977 - 3004
  • [46] Application of Non-Negative Sparse Matrix Transformation in Hyperspectral Analysis
    Z. Deng
    Y. Fu
    S. Zhao
    Y. Gao
    J. Cui
    Journal of Applied Spectroscopy, 2022, 89 : 593 - 601
  • [47] A SIMPLE ALGORITHM FOR NON-NEGATIVE SPARSE PRINCIPAL COMPONENT ANALYSIS
    Tsingalis, Ioannis
    Kotropoulos, Constantine
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2075 - 2079
  • [48] Image classification by non-negative sparse coding, correlation constrained low-rank and sparse decomposition
    Zhang, Chunjie
    Liu, Jing
    Liang, Chao
    Xue, Zhe
    Pang, Junbiao
    Huang, Qingming
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 123 : 14 - 22
  • [49] Application of Non-Negative Sparse Matrix Transformation in Hyperspectral Analysis
    Deng, Z.
    Fu, Y.
    Zhao, S.
    Gao, Y.
    Cui, J.
    JOURNAL OF APPLIED SPECTROSCOPY, 2022, 89 (03) : 593 - 601
  • [50] Sparse non-negative matrix factorizations for ultrasound factor analysis
    Chen, Xi
    Wu, Kaizhi
    Ding, Mingyue
    Sang, Nong
    OPTIK, 2013, 124 (23): : 5891 - 5897