Cardinal interpolation with polysplines on annuli

被引:17
作者
Kounchev, O
Render, H
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[2] Univ La Rioja, Dept Matemat & Computac, Logrono 26004, Spain
关键词
cardinal splines; Schoenberg interpolation theorems; L-splines; cardinal spline interpolation; spherical harmonics; polyharmonic functions in annulus; biharmonic functions; polysplines;
D O I
10.1016/j.jat.2005.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cardinal polysplines of order p on annuli are functions in C2p-2 (R-n\vertical bar 0 vertical bar) which are piecewise poly-harmonic of order 17 such that Delta(p-l)S may have discontinuities on spheres in R-n, centered at the origin and having radii of the form e(j), j epsilon Z. The main result is an interpolation theorem for cardinal polysplines where the data are given by sufficiently smooth functions on the spheres of radius e(j) and center 0 obeying a certain growth condition in vertical bar j vertical bar. This result can be considered as an analogue of the famous interpolation theorem of Schoenberg for cardinal splines. (c) 2005 Elsevier Inc. All. rights reserved.
引用
收藏
页码:89 / 107
页数:19
相关论文
共 23 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1976, LECT NOTES MATH
[3]  
[Anonymous], 2001, MULTIVARIATE POLYSPL
[4]  
AXLER S, 1992, HARMONIC FUNCTION TH
[5]  
Baker A., 1975, Transcendental number theory
[6]  
BEJANCU A, 2003, P 5 INT C CURV SURF
[7]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[8]  
CONWAY JB, 1978, FUNCTIONS ONE COMPLE
[9]   RECURRENCE RELATIONS FOR CHEBYSHEVIAN B-SPLINES [J].
DYN, N ;
RON, A .
JOURNAL D ANALYSE MATHEMATIQUE, 1988, 51 :118-138
[10]  
Kalf H., 1995, Bull. Belg. Math. Soc. Simon Stevin, V2, P361, DOI DOI 10.36045/BBMS/1103408694