An integrated approach to obtain xylo-oligosaccharides from sugarcane straw: From lab to pilot scale

被引:51
作者
Brenelli, Livia B. [1 ,2 ]
Figueiredo, Fernanda L. [3 ]
Damasio, Andre [3 ]
Franco, Telma T. [2 ]
Rabelo, Sarita C. [4 ]
机构
[1] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Biorenewables Natl Lab LNBR, Giuseppe Maximo Scolfaro 10-000, Campinas, SP, Brazil
[2] Univ Estadual Campinas, Interdisciplinary Ctr Energy Planning, Cora Coralina 330, Campinas, SP, Brazil
[3] Univ Estadual Campinas, Inst Biol, Dept Biochem & Tissue Biol, UNICAMP, Campinas, SP, Brazil
[4] Sao Paulo State Univ, Coll Agr Sci, Dept Bioproc & Biotechnol, UNESP, Ave Univ,3780 Altos do Paraiso, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Sugarcane straw; Xylo-oligosaccharides; Deacetylation; Hydrothermal pretreatment; Xylanases; STEAM-EXPLOSION; ENZYMATIC-HYDROLYSIS; ETHANOL-PRODUCTION; BAGASSE; XYLOOLIGOSACCHARIDES; AUTOHYDROLYSIS; PRETREATMENT; XYLANASE;
D O I
10.1016/j.biortech.2020.123637
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Sugarcane straw (SS) is a widely available agricultural processing feedstock with the potential to produce 2nd generation bioethanol and bioproducts, in addition to the more conventional use for heat and/or electrical power generation. In this study, we investigated the operational parameters to maximize the production of xylo-oligosaccharides (XOS) using mild deacetylation, followed by hydrothermal pretreatment. From the laboratory to the pilot-scale, the optimized two-stage pretreatment promoted 81.5% and 70.5% hemicellulose solubilization and led to XOS yields up to 9.8% and 9.1% (w/w of initial straw), respectively. Moreover, different fungal xylanases were also tested to hydrolyze XOS into xylobiose (X2) and xylotriose (X3). GH10 from Aspergillus nidulans performed better than GH11 xylanases and the ratio of the desired products (X2 + X3) increased to 72% due to minimal monomeric sugar formation. Furthermore, a cellulose-rich fraction was obtained, which can be used in other high value-added applications, such as for the production of cello-oligomers.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Review of fossil fuels and future energy technologies [J].
Abas, N. ;
Kalair, A. ;
Khan, N. .
FUTURES, 2015, 69 :31-49
[2]  
Alvarez C., 2017, IND CROP PROD, DOI [10.1016/j.indcrop.2017.01, DOI 10.1016/J.INDCROP.2017.01]
[3]   From lignocellulosic residues to market: Production and commercial potential of xylooligosaccharides [J].
Amorim, Claudia ;
Silverio, Sara C. ;
Prather, Kristala L. J. ;
Rodrigues, Ligia R. .
BIOTECHNOLOGY ADVANCES, 2019, 37 (07)
[4]   The potential of tailoring the conditions of steam explosion to produce xylo-oligosaccharides from sugarcane bagasse [J].
Azevedo Carvalho, Ana Flavia ;
Marcondes, Wilian Fioreli ;
Neto, Pedro de Oliva ;
Pastore, Glaucia Maria ;
Saddler, Jack N. ;
Arantes, Valdeir .
BIORESOURCE TECHNOLOGY, 2018, 250 :221-229
[5]   Effect of severity factor on the hydrothermal pretreatment of sugarcane straw [J].
Batista, Gustavo ;
Souza, Renata B. A. ;
Pratto, Bruna ;
dos Santos-Rocha, Martha S. R. ;
Cruz, Antonio J. G. .
BIORESOURCE TECHNOLOGY, 2019, 275 :321-327
[6]   Pilot-scale production of xylo-oligosaccharides and fermentable sugars from Miscanthus using steam explosion pretreatment [J].
Bhatia, Rakesh ;
Winters, Ana ;
Bryant, David N. ;
Bosch, Maurice ;
Clifton-Brown, John ;
Leak, David ;
Gallagher, Joe .
BIORESOURCE TECHNOLOGY, 2020, 296
[7]   Towards enzymatic breakdown of complex plant xylan structures: State of the art [J].
Biely, Peter ;
Singh, Suren ;
Puchart, Vladimir .
BIOTECHNOLOGY ADVANCES, 2016, 34 (07) :1260-1274
[8]   Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF [J].
Cantarella, M ;
Cantarella, L ;
Gallifuoco, A ;
Spera, A ;
Alfani, F .
BIOTECHNOLOGY PROGRESS, 2004, 20 (01) :200-206
[9]   Autohydrolysis of Miscanthus x giganteus for the production of xylooligosaccharides (XOS): Kinetics, characterization and recovery [J].
Chen, Ming-Hsu ;
Bowman, Michael J. ;
Dien, Bruce S. ;
Rausch, Kent D. ;
Tumbleson, M. E. ;
Singh, Vijay .
BIORESOURCE TECHNOLOGY, 2014, 155 :359-365
[10]  
Chen XW, 2012, BIOTECHNOL BIOFUELS, V5, DOI [10.1186/1754-6834-5-8, 10.1186/1754-6834-5-60]