Geometry nature of hydraulic fracture propagation from oriented perforations and implications for directional hydraulic fracturing

被引:46
|
作者
Bai, Qingsheng [1 ]
Liu, Zhenghe [2 ]
Zhang, Cun [3 ]
Wang, Fangtian [1 ]
机构
[1] China Univ Min & Technol, Sch Mines, Key Lab Deep Coal Resource Min CUMT, Minist Educ China, Xuzhou, Jiangsu, Peoples R China
[2] Taiyuan Univ Technol, Key Lab Situ Property Improving Min, Minist Educ, Taiyuan, Peoples R China
[3] China Univ Min & Technol Beijing, Sch Energy & Min Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Geometry nature; Oriented perforation; Hydraulic fracturing; Directional hydraulic fracturing (DHF); FDEM modeling; PORE PRESSURE INFLUENCE; NUMERICAL-SIMULATION; INITIATION; WELLBORE; MODEL; MECHANISM; BEHAVIOR; FAILURE; IMPACT; ROOF;
D O I
10.1016/j.compgeo.2020.103682
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, hydromechanical hybrid finite-discrete element method (FDEM) models were employed to investigate hydraulic fracturing from oriented perforations at the microscale. Numerical calibrations were first used to obtain the microproperties that can represent the realistic behavior of sandstone. The fracture morphology and breakdown pressure obtained from the numerical hydraulic fracturing show reasonable agreements with the experimental results, indicating that the numerical results are convincing. Then, this method was applied to investigate the effects of the differential stress, perforation angle, perforation length, and injection rate on both the geometry nature of the hydraulic fractures (HFs) and the breakdown pressure. The perforation orientation, differential stress, and injection rate are found to strongly affect the breakdown pressure and HF geometry. However, the perforation length shows a weaker effect, especially when the perforation length is larger than the wellbore diameter. Furthermore, small-scale simulations were performed to investigate the formation of connected fractures developed from multiple perforated wellbores under the concept of directional hydraulic fracturing (DHF). The different fracture propagations and geometries in the DHF model indicate that conclusions from studying hydraulic fracturing from a single perforated wellbore may provide a limited reference for hydraulic fracturing from multiple perforated wellbores. The stress shadow effects during HF interactions were identified as the primary factor that contributed to these differences. Numerical results also provide new information on the roles of several factors (differential stress, injection rate, perforation orientation, and injection sequence) in DHF. DHF could take advantage of stress shadow effects by optimizing related factors. Based on the numerical results, some implications on the design of DHF, from small-scale simulations to field-scale applications, are discussed.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Influence of multi-perforations hydraulic fracturing on stress and fracture characteristics of hard rock mass under excavation condition
    Chen, Zhenghong
    Qiu, Jiadong
    Chen, Qiunan
    Li, Xibing
    Ma, Binhui
    Huang, Xiaocheng
    ENGINEERING FRACTURE MECHANICS, 2022, 276
  • [32] The Propagation of Hydraulic Fractures in a Natural Fracture Network: A Numerical Study and Its Implications
    Liu, Yiwei
    Hu, Yi
    Kang, Yong
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [33] A coupled hydraulic-mechanical-damage geotechnical model for simulation of fracture propagation in geological media during hydraulic fracturing
    Li, Tianjiao
    Li, Lianchong
    Tang, Chun'an
    Zhang, Zilin
    Li, Ming
    Zhang, Liaoyuan
    Li, Aishan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 173 : 1390 - 1416
  • [34] Crack propagation and hydraulic fracturing in different lithologies
    Hou Zhen-Kun
    Cheng Han-Lie
    Sun Shu-Wei
    Chen Jun
    Qi Dian-Qing
    Liu Zhi-Bo
    APPLIED GEOPHYSICS, 2019, 16 (02) : 243 - 251
  • [35] Geometric nature of hydraulic fracture propagation in naturally-fractured reservoirs
    Wasantha, P. L. P.
    Konietzlcy, H.
    Weber, F.
    COMPUTERS AND GEOTECHNICS, 2017, 83 : 209 - 220
  • [36] Experimental study of hydraulic fracture propagation in multi-hole synchronous fracturing in horizontal wells in sandstone
    Jiang, Yulong
    Liang, Weiguo
    Lian, Haojie
    He, Wei
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2025, 186
  • [37] The effect of natural fractures on hydraulic fracturing propagation in coal seams
    Wang, Tao
    Hu, Wanrui
    Elsworth, Derek
    Zhou, Wei
    Zhou, Weibo
    Zhao, Xianyu
    Zhao, Lianzheng
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 150 : 180 - 190
  • [38] Numerical investigation on rules of fracture propagation during hydraulic fracturing in heterogeneous coal-rock mass
    Yuan, Zhigang
    Shao, Yaohua
    Xie, Donghai
    Huang, Fei
    JOURNAL OF VIBROENGINEERING, 2019, 21 (04) : 1147 - 1162
  • [39] Rules of fracture propagation of hydraulic fracturing in radial well based on XFEM
    Xiaolong Li
    Wen Xiao
    Zhanqing Qu
    Tiankui Guo
    Jianxiong Li
    Wei Zhang
    Yu Tian
    Journal of Petroleum Exploration and Production Technology, 2018, 8 : 1547 - 1557
  • [40] Interaction between Hydraulic Fracture and Pre-Existing Fracture under Pulse Hydraulic Fracturing
    Wei, C.
    Zhang, B.
    Li, S. C.
    Fan, Z. X.
    Li, C. X.
    SPE PRODUCTION & OPERATIONS, 2021, 36 (03): : 553 - 571