Hofstadter butterfly and the quantum Hall effect in twisted double bilayer graphene

被引:25
作者
Crosse, J. A. [1 ,2 ]
Nakatsuji, Naoto [3 ]
Koshino, Mikito [3 ]
Moon, Pilkyung [1 ,2 ,4 ,5 ]
机构
[1] New York Univ Shanghai, Arts & Sci, 1555 Century Ave, Shanghai 200122, Peoples R China
[2] NYU Shanghai, NYU ECNU Inst Phys, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R China
[3] Osaka Univ, Dept Phys, Osaka 5600043, Japan
[4] NYU, Dept Phys, 726 Broadway, New York, NY 10003 USA
[5] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
基金
美国国家科学基金会;
关键词
BLOCH ELECTRONS; CONDUCTIVITY; TRANSPORT; STATES; BANDS;
D O I
10.1103/PhysRevB.102.035421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the energy spectrum and quantum Hall effects of the twisted double bilayer graphene in uniform magnetic field. We investigate two different arrangements, AB-AB and AB-BA, which differ in the relative orientation but have very similar band structures in the absence of a magnetic field. For each system we calculate the energy spectrum and quantized Hall conductivities at each spectral gap by using a continuum Hamiltonian that satisfies the magnetotranslation condition. We show that the Hofstadter butterfly spectra of AB-AB and AB-BA stackings differ significantly, even though their zero magnetic field band structures closely resemble; the spectrum of AB-AB has valley degeneracy, which can be lifted by applying interlayer potential asymmetry, while the spectrum of AB-BA has no such degeneracy in any case. We explain the origin of the difference from the perspectives of lattice symmetry and band topology.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Chiral limits and effect of light on the Hofstadter butterfly in twisted bilayer graphene
    Benlakhouy, Nadia
    Jellal, Ahmed
    Bahlouli, Hocine
    Vogl, Michael
    PHYSICAL REVIEW B, 2022, 105 (12)
  • [2] Energy spectrum and quantum Hall effect in twisted bilayer graphene
    Moon, Pilkyung
    Koshino, Mikito
    PHYSICAL REVIEW B, 2012, 85 (19):
  • [3] Quantum Hall effect in graphene with twisted bilayer stripe defects
    Lofwander, Tomas
    San-Jose, Pablo
    Prada, Elsa
    PHYSICAL REVIEW B, 2013, 87 (20)
  • [4] Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices
    Dean, C. R.
    Wang, L.
    Maher, P.
    Forsythe, C.
    Ghahari, F.
    Gao, Y.
    Katoch, J.
    Ishigami, M.
    Moon, P.
    Koshino, M.
    Taniguchi, T.
    Watanabe, K.
    Shepard, K. L.
    Hone, J.
    Kim, P.
    NATURE, 2013, 497 (7451) : 598 - 602
  • [5] Quantum Hall Effect of Massless Dirac Fermions and Free Fermions in Hofstadter's Butterfly
    Yoshioka, Nobuyuki
    Matsuura, Hiroyasu
    Ogata, Masao
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (06)
  • [6] Strongly correlated Hofstadter subbands in minimally twisted bilayer graphene
    Shen, Cheng
    Guan, Yifei
    Pizzirani, Davide
    Zhou, Zekang
    Barman, Punam
    Watanabe, Kenji
    Taniguchi, Takashi
    Wiedmann, Steffen
    Yazyev, Oleg V.
    Banerjee, Mitali
    PHYSICAL REVIEW B, 2024, 110 (16)
  • [7] Quantum Hall effect in bilayer and trilayer graphene
    Cobaleda, C.
    Rossella, F.
    Pezzini, S.
    Diez, E.
    Bellani, V.
    Maude, D. K.
    Blake, P.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 6, 2012, 9 (06): : 1411 - 1414
  • [8] Floquet engineering of twisted double bilayer graphene
    Rodriguez-Vega, Martin
    Vogl, Michael
    Fiete, Gregory A.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [9] Polaritonic Hofstadter butterfly and cavity control of the quantized Hall conductance
    Rokaj, Vasil
    Penz, Markus
    Sentef, Michael A.
    Ruggenthaler, Michael
    Rubio, Angel
    PHYSICAL REVIEW B, 2022, 105 (20)
  • [10] Emergence of Massless Dirac Fermions in Graphene's Hofstadter Butterfly at Switches of the Quantum Hall Phase Connectivity
    Diez, M.
    Dahlhaus, J. P.
    Wimmer, M.
    Beenakker, C. W. J.
    PHYSICAL REVIEW LETTERS, 2014, 112 (19)