Formation of spinel structured compounds in the lithium permanganate thermal decomposition

被引:3
|
作者
Andriiko, Alexander A. [1 ]
Shpak, Arseniy Ye [1 ]
Andriyko, Yuriy O. [2 ]
Garcia, Jose R. [3 ]
Khainakov, Sergei A. [3 ]
Vlasenko, Nataliya Ye [1 ]
机构
[1] Natl Tech Univ Ukraine KPI, Chair Gen & Inorgan Chem, Fac Chem Technol, UA-03056 Kiev, Ukraine
[2] CEST, A-2700 Wiener Neustadt, Austria
[3] Univ Oviedo, Dept Quim Organ & Inorgan, CINN, E-33006 Oviedo, Spain
关键词
Lithium permanganate; Thermal decomposition; Overstoichiometric spinels; Electrochemical properties; DIMENSIONAL MANGANESE OXIDE; CELLS; ELECTRODES; BATTERIES; LIMN2O4; CATHODE; LIMNO2; CDMO;
D O I
10.1007/s10008-011-1603-5
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Products of thermal decomposition of lithium permanganate LiMnO4 center dot 3H(2)O, which are formed in temperature range 160-900 A degrees C, have been characterized by powder XRD and chemical analysis. It has been found that the decomposition of the permanganate results in the formation of an equimolar mixture of manganate(IV) Li2MnO3 and stoichiometric spinel LiMn2O4 at the temperatures above 700 A degrees C. Intermediate products with spinel structure are formed at lower temperatures with oxidation number of manganese being between +4 and +3.5. These compounds can be related to overstoichiometric spinel phases with general formula Li (a) [Mn(1 + 0.5a)Li(1 -aEuro parts per thousand 0.5a)]O-4, where a > 1. Electrochemical properties of these intermediates with regard to the reaction of Li extraction were investigated. The data are of interest for the development of synthesis methods for mixed oxides containing lithium and manganese with lithium permanganate as the lithiating reagent.
引用
收藏
页码:1993 / 1998
页数:6
相关论文
共 50 条
  • [31] Study on the kinetics properties of lithium hexafluorophosphate thermal decomposition reaction
    Wang, QS
    Sun, JH
    Lu, SX
    Yao, XL
    Chen, CH
    SOLID STATE IONICS, 2006, 177 (1-2) : 137 - 140
  • [32] Thermal decomposition behavior of graphite anodes for lithium ion batteries
    Honbo, H
    Muranaka, Y
    Kita, F
    ELECTROCHEMISTRY, 2001, 69 (09) : 686 - 691
  • [33] In Situ Spinel Formation in a Smart Nano-Structured Matrix for No-Cement Refractory Castables
    Madej, Dominika
    Tyrala, Karina
    MATERIALS, 2020, 13 (06)
  • [34] High energy spinel-structured cathode stabilized by layered materials for advanced lithium-ion batteries
    Lu, Jia
    Chang, Ya-Lin
    Song, Bohang
    Xia, Hui
    Yang, Jer-Ren
    Lee, Kim Seng
    Lu, Li
    JOURNAL OF POWER SOURCES, 2014, 271 : 604 - 613
  • [35] Study on the Thermal Decomposition Behavior of MgAl- hydrotalcite compounds
    Yao, Runsheng
    Wu, Xu
    Du, Yali
    Xie, Xianmei
    Wang, Zhizhong
    NEW MATERIALS AND ADVANCED MATERIALS, PTS 1 AND 2, 2011, 152-153 : 1451 - 1456
  • [36] Praseodymium oxide formation by thermal decomposition of a praseodymium complex
    Popa, M
    Kakihana, M
    SOLID STATE IONICS, 2001, 141 : 265 - 272
  • [37] Controlled thermal decomposition of NaSi to derive silicon clathrate compounds
    Horie, Hiro-Omi
    Kikudome, Takashi
    Teramura, Kyosuke
    Yamanaka, Shoji
    JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (01) : 129 - 135
  • [38] A study of thermal decomposition characteristic of hydrazine compounds gel propellant
    Shi L.-Y.
    Cheng Y.-X.
    Fang T.
    Xu S.
    Liu D.-B.
    Zhong Q.
    Wang K.
    Tuijin Jishu/Journal of Propulsion Technology, 2016, 37 (09): : 1780 - 1785
  • [39] Preparation of lithium carbonate by thermal decomposition in a rotating packed bed reactor
    Liu, Wei
    Chu, Guang-Wen
    Li, Shao-Chen
    Bai, Shun
    Luo, Yong
    Sun, Bao-Chang
    Chen, Jian-Feng
    CHEMICAL ENGINEERING JOURNAL, 2019, 377
  • [40] Thermal stability and decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts
    Kerner, Manfred
    Plylahan, Nareerat
    Scheers, Johan
    Johansson, Patrik
    RSC ADVANCES, 2016, 6 (28): : 23327 - 23334