Formation of spinel structured compounds in the lithium permanganate thermal decomposition

被引:3
|
作者
Andriiko, Alexander A. [1 ]
Shpak, Arseniy Ye [1 ]
Andriyko, Yuriy O. [2 ]
Garcia, Jose R. [3 ]
Khainakov, Sergei A. [3 ]
Vlasenko, Nataliya Ye [1 ]
机构
[1] Natl Tech Univ Ukraine KPI, Chair Gen & Inorgan Chem, Fac Chem Technol, UA-03056 Kiev, Ukraine
[2] CEST, A-2700 Wiener Neustadt, Austria
[3] Univ Oviedo, Dept Quim Organ & Inorgan, CINN, E-33006 Oviedo, Spain
关键词
Lithium permanganate; Thermal decomposition; Overstoichiometric spinels; Electrochemical properties; DIMENSIONAL MANGANESE OXIDE; CELLS; ELECTRODES; BATTERIES; LIMN2O4; CATHODE; LIMNO2; CDMO;
D O I
10.1007/s10008-011-1603-5
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Products of thermal decomposition of lithium permanganate LiMnO4 center dot 3H(2)O, which are formed in temperature range 160-900 A degrees C, have been characterized by powder XRD and chemical analysis. It has been found that the decomposition of the permanganate results in the formation of an equimolar mixture of manganate(IV) Li2MnO3 and stoichiometric spinel LiMn2O4 at the temperatures above 700 A degrees C. Intermediate products with spinel structure are formed at lower temperatures with oxidation number of manganese being between +4 and +3.5. These compounds can be related to overstoichiometric spinel phases with general formula Li (a) [Mn(1 + 0.5a)Li(1 -aEuro parts per thousand 0.5a)]O-4, where a > 1. Electrochemical properties of these intermediates with regard to the reaction of Li extraction were investigated. The data are of interest for the development of synthesis methods for mixed oxides containing lithium and manganese with lithium permanganate as the lithiating reagent.
引用
收藏
页码:1993 / 1998
页数:6
相关论文
共 50 条
  • [21] Thermal behaviour of pharmacologically active lithium compounds
    Tobón-Zapata, GE
    Ferrer, EG
    Etcheverry, SB
    Baran, EJ
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2000, 61 (01) : 29 - 35
  • [22] Role of the thermal regime in the defect formation of zinc oxide nanostructures prepared by the thermal decomposition process
    Katekaew, Panuwat
    Prasatkhetragarn, Anurak
    Sirirak, Reungruthai
    Boonruang, Chatdanai
    Klinbumrung, Arrak
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2023, 237 (08): : 1077 - 1104
  • [23] Investigations of the Temperature Influence on Formation of Compounds from the BTEX Group During the Thermal Decomposition of Furan Resin
    Kubecki, M.
    Holtzer, M.
    Zymankowska-Kumon, S.
    ARCHIVES OF FOUNDRY ENGINEERING, 2013, 13 (02) : 85 - 90
  • [24] Lithium resurrection: Synergistic thermal-decomposition and electric-drive strategy enabling inactive lithium fully recycling
    Yang, Shuzhe
    Luo, Hao
    Li, Yukun
    Gao, Qingqing
    Li, Hui
    Cai, Hongwei
    Li, Xiaodan
    Wen, Yanfen
    Tong, Yujin
    Liu, Tiefeng
    Lu, Mi
    JOURNAL OF ENERGY CHEMISTRY, 2025, 102 : 842 - 851
  • [25] Volatile Technetium Carbonyl Compounds: Vaporization and Thermal Decomposition
    Sidorenko, G. V.
    RADIOCHEMISTRY, 2010, 52 (06) : 638 - 652
  • [26] Thermodynamic Study of Thermal Decomposition of Magnesium Chloride Compounds
    Jia Qian
    Chen Zhen
    Wu Yu-Long
    Yang Ming-De
    Wang Xue-Kui
    Tang Na
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2011, 27 (08) : 1529 - 1535
  • [27] Thermal decomposition study of hydrotalcite-like compounds
    Nebot-Díaz, I
    Rives, V
    Rocha, J
    Carda, JB
    BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 2002, 41 (04): : 411 - 414
  • [28] Thermal decomposition of polynitro compounds under nonisothermal conditions
    Stepanov, RS
    Kruglyakova, LA
    Astakhov, AM
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2006, 42 (01) : 63 - 67
  • [29] Volatile technetium carbonyl compounds: Vaporization and thermal decomposition
    G. V. Sidorenko
    Radiochemistry, 2010, 52 (6) : 638 - 652
  • [30] Thermal Decomposition of Polynitro Compounds under Nonisothermal Conditions
    R. S. Stepanov
    L. A. Kruglyakova
    A. M. Astakhov
    Combustion, Explosion and Shock Waves, 2006, 42 : 63 - 67