Undersampling Instance Selection for Hybrid and Incomplete Imbalanced Data

被引:0
|
作者
Camacho-Nieto, Oscar [1 ]
Yanez-Marquez, Cornelio [2 ]
Villuendas-Rey, Yenny [1 ]
机构
[1] Inst Politecn Nacl, CIDETEC, Cdmx, Mexico
[2] Inst Politecn Nacl, CIC, Cdmx, Mexico
关键词
undersampling; imbalanced data; hybrid and incomplete data; SOFTWARE TOOL; DATA-SETS; CLASSIFICATION; ALGORITHMS; ENSEMBLES; KEEL;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper proposes a novel undersampling method, for dealing with imbalanced datasets. The proposal is based on a novel instance importance measure (also introduced in this paper), and is able to balance hybrid and incomplete data. The numerical experiments carried out show the proposed undersampling algorithm outperforms others algorithms of the state of art, in well-known imbalanced datasets.
引用
收藏
页码:698 / 719
页数:22
相关论文
共 50 条
  • [41] Informative Instance Detection for Active Learning on Imbalanced Data
    Xu, Jian
    Wang, Xinyue
    Cai, Zixin
    Yang, Liu
    Jing, Liping
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [42] Forecasting cyberattacks with incomplete, imbalanced, and insignificant data
    Okutan A.
    Werner G.
    Yang S.J.
    McConky K.
    Cybersecurity, 1 (1)
  • [43] Feature Selection in Imbalanced Data
    Kamalov F.
    Thabtah F.
    Leung H.H.
    Annals of Data Science, 2023, 10 (06) : 1527 - 1541
  • [44] A novel progressively undersampling method based on the density peaks sequence for imbalanced data
    Xie, Xiaoying
    Liu, Huawen
    Zeng, Shouzhen
    Lin, Lingbin
    Li, Wen
    KNOWLEDGE-BASED SYSTEMS, 2021, 213
  • [45] Clustering Based Undersampling for Effective Learning from Imbalanced Data: An Iterative Approach
    Bhattacharya R.
    De R.
    Chakraborty A.
    Sarkar R.
    SN Computer Science, 5 (4)
  • [46] Evolutionary Undersampling for Extremely Imbalanced Big Data Classification under Apache Spark
    Triguero, I.
    Galar, M.
    Merino, D.
    Maillo, J.
    Bustince, H.
    Herrera, F.
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 640 - 647
  • [47] Hybrid sampling for imbalanced data
    Seiffert, Chris
    Khoshgoftaar, Taghi M.
    Van Hulse, Jason
    PROCEEDINGS OF THE 2008 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2008, : 202 - 207
  • [48] Adaptive Ensemble Undersampling-Boost: A novel learning framework for imbalanced data
    Lu, Wei
    Li, Zhe
    Chu, Jinghui
    JOURNAL OF SYSTEMS AND SOFTWARE, 2017, 132 : 272 - 282
  • [49] EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    Galar, Mikel
    Fernandez, Alberto
    Barrenechea, Edurne
    Herrera, Francisco
    PATTERN RECOGNITION, 2013, 46 (12) : 3460 - 3471
  • [50] Hybrid sampling for imbalanced data
    Seiffert, Chris
    Khoshgoftaar, Taghi M.
    Van Hulse, Jason
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2009, 16 (03) : 193 - 210