IMPROVED BINARY PARTITION TREE CONSTRUCTION FOR HYPERSPECTRAL IMAGES: APPLICATION TO OBJECT DETECTION

被引:13
作者
Valero, Silvia [1 ,2 ]
Salembier, Philippe [1 ]
Chanussot, Jocelyn [2 ]
Cuadras, Carles M. [3 ]
机构
[1] Tech Univ Catalonia UPC, Barcelona, Catalonia, Spain
[2] Grenoble Inst Technol, Signal & Image Dept, GIPSA Lab, Grenoble, France
[3] Univ Barcelona, Stat Dept, Barcelona, Spain
来源
2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2011年
关键词
Hyperspectral imaging; Binary Partition Tree; canonical correlations; segmentation; object detection; SEGMENTATION;
D O I
10.1109/IGARSS.2011.6049723
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper discusses hierarchical region-based representation using Binary Partition Tree in the framework of hyperspectral data. Based on region merging techniques, this region-based representation reduces the number of elementary primitives compared to the pixel-based representation and allows a more robust filtering, segmentation, classification or information retrieval. The work presented here proposes a strategy for merging hyperspectral regions using a new association measure depending on canonical correlations relating principal coordinates. To demonstrate an example of BPT usefulness, a pruning strategy aiming at object detection is discussed. Experimental results demonstrate the good performances of BPT.
引用
收藏
页码:2515 / 2518
页数:4
相关论文
共 50 条
  • [41] Topological triangle characterization with application to object detection from images
    Nonato, L. G.
    Lizier, M. A. S.
    Batista, J.
    de Oliveira, M. C. F.
    Castelo, A.
    IMAGE AND VISION COMPUTING, 2008, 26 (08) : 1081 - 1093
  • [42] Object Detection Algorithm in Remote Sensing Images Based on Improved YOLOX
    Hu Zhaohua
    Li Yuhui
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [43] APPLICATION OF MACHINE LEARNING FOR OBJECT DETECTION IN OBLIQUE AERIAL IMAGES
    Zachar, P.
    Kurczynski, Z.
    Ostrowski, W.
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 657 - 663
  • [44] Improved YOLOv5: Efficient Object Detection for Fire Images
    Yu, Dongxing
    Li, Shuchao
    Zhang, Zhongze
    Liu, Xin
    Ding, Wei
    Zhao, Xinyi
    FIRE-SWITZERLAND, 2025, 8 (02):
  • [45] Application of convolutional neural networks trained on optical images for object detection in radar images
    Pavlov, V. A.
    Belov, A. A.
    Volvenko, S. V.
    Rashich, A., V
    COMPUTER OPTICS, 2024, 48 (02) : 253 - 259
  • [46] Improved YOLOv8-Based Lightweight Object Detection on Drone Images
    Jiang, Maoxiang
    Si, Zhanjun
    Yang, Ke
    Zhang, Yingxue
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VII, ICIC 2024, 2024, 14868 : 426 - 434
  • [47] Object Detection With Component-Graphs in Multi-Band Images: Application to Source Detection in Astronomical Images
    Nguyen, Thanh Xuan
    Chierchia, Giovanni
    Razim, Oleksandra
    Peletier, Reynier F.
    Najman, Laurent
    Talbot, Hugues
    Perret, Benjamin
    IEEE ACCESS, 2021, 9 : 156482 - 156491
  • [48] Application of the deep fusion mechanism in object detection of remote sensing images
    Dong R.
    Jiao L.
    Zhao J.
    Shen W.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2021, 48 (05): : 128 - 138
  • [49] Research on object detection in remote sensing images based on improved horizontal target detection algorithm
    Deng, Liwei
    Tan, Yangyang
    Zhao, Dexu
    Liu, Shanshan
    EARTH SCIENCE INFORMATICS, 2025, 18 (03)
  • [50] Local Binary Pattern (LBP) with Application to Variant Object Detection: A Survey and Method
    Karis, Mohd Safirin
    Razif, Nur Rafiqah Abdul
    Ali, Nursabillilah Mohd
    Rosli, M. Asyraf
    Aras, Mohd Shahrieel Mohd
    Ghazaly, Mariam Md
    2016 IEEE 12TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA), 2016, : 221 - 226