Coarse graining for the phase-field model of fast phase transitions

被引:24
|
作者
Jou, D. [1 ]
Galenko, P. K. [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Catalonia, Spain
[2] Univ Jena, Fak Phys Astron, D-07743 Jena, Germany
关键词
CAHN-HILLIARD EQUATION; SPINODAL DECOMPOSITION; HYPERBOLIC MODEL; INERTIAL TERM; TIME; SOLIDIFICATION; RELAXATION; FLUCTUATIONS; EVOLUTION; DIFFUSION;
D O I
10.1103/PhysRevE.88.042151
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fast phase transitions under lack of local thermalization between successive elementary steps of the physical process are treated analytically. Non-Markovian master equations are derived for fast processes, which do not have enough time to reach energy or momentum thermalization during rapid phase change or freezing of a highly nonequilibrium system. These master equations provide a further physical basis for evolution and transport equations of the phase-field model used previously in the analyses of fast phase transitions.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Phase-field crystal model for heterostructures
    Hirvonen, Petri
    Heinonen, Vili
    Dong, Haikuan
    Fan, Zheyong
    Elder, Ken R.
    Ala-Nissila, Tapio
    PHYSICAL REVIEW B, 2019, 100 (16)
  • [42] Phase-field model for binary alloys
    Kim, SG
    Kim, WT
    Suzuki, T
    PHYSICAL REVIEW E, 1999, 60 (06): : 7186 - 7197
  • [43] On a phase-field model with a logarithmic nonlinearity
    Alain Miranville
    Applications of Mathematics, 2012, 57 : 215 - 229
  • [44] Phase-Field Model of Electronic Antidoping
    Shi, Yin
    Zhao, Guo-Dong
    Dabo, Ismaila
    Ramanathan, Shriram
    Chen, Long-Qing
    PHYSICAL REVIEW LETTERS, 2024, 132 (25)
  • [45] The phase-field model in tumor growth
    Travasso, Rui D. M.
    Castro, Mario
    Oliveira, Joana C. R. E.
    PHILOSOPHICAL MAGAZINE, 2011, 91 (01) : 183 - 206
  • [46] Γ-limit of a phase-field model of dislocations
    Garroni, A
    Müller, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) : 1943 - 1964
  • [47] Phase-field model of oxidation: Kinetics
    Kim, Kyoungdoc
    Sherman, Quentin C.
    Aagesen, Larry K.
    Voorhees, Peter W.
    PHYSICAL REVIEW E, 2020, 101 (02)
  • [48] Fluctuations in the phase-field model of solidification
    Pavlik, SG
    Sekerka, RF
    PHYSICA A, 2000, 277 (3-4): : 415 - 431
  • [49] PHASE-FIELD MODEL OF EUTECTIC GROWTH
    KARMA, A
    PHYSICAL REVIEW E, 1994, 49 (03): : 2245 - 2250
  • [50] Electrical treeing: A phase-field model
    Cai, Ziming
    Wang, Xiaohui
    Li, Longtu
    Hong, Wei
    EXTREME MECHANICS LETTERS, 2019, 28 : 87 - 95