Coarse graining for the phase-field model of fast phase transitions

被引:24
作者
Jou, D. [1 ]
Galenko, P. K. [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Catalonia, Spain
[2] Univ Jena, Fak Phys Astron, D-07743 Jena, Germany
关键词
CAHN-HILLIARD EQUATION; SPINODAL DECOMPOSITION; HYPERBOLIC MODEL; INERTIAL TERM; TIME; SOLIDIFICATION; RELAXATION; FLUCTUATIONS; EVOLUTION; DIFFUSION;
D O I
10.1103/PhysRevE.88.042151
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fast phase transitions under lack of local thermalization between successive elementary steps of the physical process are treated analytically. Non-Markovian master equations are derived for fast processes, which do not have enough time to reach energy or momentum thermalization during rapid phase change or freezing of a highly nonequilibrium system. These master equations provide a further physical basis for evolution and transport equations of the phase-field model used previously in the analyses of fast phase transitions.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A regularized phase-field model for faceting in a kinetically controlled crystal growth
    Philippe, T.
    Henry, H.
    Plapp, M.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2241):
  • [42] Global existence of weak solution to a phase-field model on martensitic phase transformations
    Yang, Manman
    Wu, Fan
    Zhu, Zixian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 3545 - 3559
  • [43] A quantitative phase-field model for two-phase elastically inhomogeneous systems
    Durga, A.
    Wollants, P.
    Moelans, N.
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 99 : 81 - 95
  • [44] Well-posedness of solutions to a phase-field model for the martensitic phase transformations
    Yang, Manman
    Ma, Li
    APPLICABLE ANALYSIS, 2022, : 2403 - 2417
  • [45] A phase-field model for grain growth with trijunction drag
    Johnson, A. E.
    Voorhees, P. W.
    ACTA MATERIALIA, 2014, 67 : 134 - 144
  • [46] ON A PHASE-FIELD MODEL FOR ELECTROWETTING AND OTHER ELECTROKINETIC PHENOMENA
    Fontelos, M. A.
    Gruen, G.
    Joerres, S.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (01) : 527 - 563
  • [47] A phase-field model for the solidification of multicomponent and multiphase alloys
    Qin, RS
    Wallach, ER
    Thomson, RC
    JOURNAL OF CRYSTAL GROWTH, 2005, 279 (1-2) : 163 - 169
  • [48] A phase-field damage model based on evolving microstructure
    Hanke, Hauke
    Knees, Dorothee
    ASYMPTOTIC ANALYSIS, 2017, 101 (03) : 149 - 180
  • [49] A phase-field model of two-phase Hele-Shaw flow
    Cueto-Felgueroso, Luis
    Juanes, Ruben
    JOURNAL OF FLUID MECHANICS, 2014, 758 : 522 - 552
  • [50] Phase-field model of stoichiometric compounds and solution phases
    Ji, Yanzhou
    Chen, Long-Qing
    ACTA MATERIALIA, 2022, 234