Coarse graining for the phase-field model of fast phase transitions

被引:24
|
作者
Jou, D. [1 ]
Galenko, P. K. [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Catalonia, Spain
[2] Univ Jena, Fak Phys Astron, D-07743 Jena, Germany
关键词
CAHN-HILLIARD EQUATION; SPINODAL DECOMPOSITION; HYPERBOLIC MODEL; INERTIAL TERM; TIME; SOLIDIFICATION; RELAXATION; FLUCTUATIONS; EVOLUTION; DIFFUSION;
D O I
10.1103/PhysRevE.88.042151
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fast phase transitions under lack of local thermalization between successive elementary steps of the physical process are treated analytically. Non-Markovian master equations are derived for fast processes, which do not have enough time to reach energy or momentum thermalization during rapid phase change or freezing of a highly nonequilibrium system. These master equations provide a further physical basis for evolution and transport equations of the phase-field model used previously in the analyses of fast phase transitions.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A Phase-Field Model for Liquid-Vapor Transitions induced by Temperature and Pressure
    Berti, A.
    Giorgi, C.
    NEW TRENDS IN FLUID AND SOLID MODELS, 2010, : 69 - 80
  • [32] A phase-field approach to non-isothermal transitions
    Morro, A.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (3-4) : 621 - 633
  • [33] A phase-field model for grain growth
    Chen, LQ
    Fan, DN
    Tikare, V
    GRAIN GROWTH IN POLYCRYSTALLINE MATERIALS III, 1998, : 137 - 146
  • [34] A phase-field model of solidification with convection
    Anderson, DM
    McFadden, GB
    Wheeler, AA
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 135 (1-2) : 175 - 194
  • [35] Phase-field model of dendritic growth
    Suzuki, T
    Ode, M
    Kim, SG
    Kim, WT
    JOURNAL OF CRYSTAL GROWTH, 2002, 237 : 125 - 131
  • [36] A phase-field model for spall fracture
    Zhang, Hao
    Peng, Hui
    Pei, Xiao-yang
    Li, Ping
    Tang, Tie-gang
    Cai, Ling-cang
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (12)
  • [37] On a phase-field model with a logarithmic nonlinearity
    Miranville, Alain
    APPLICATIONS OF MATHEMATICS, 2012, 57 (03) : 215 - 229
  • [38] A phase-field model for cohesive fracture
    Verhoosel, Clemens V.
    de Borst, Rene
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 96 (01) : 43 - 62
  • [39] Phase-field model of crystal grains
    Lobkovsky, AE
    Warren, JA
    JOURNAL OF CRYSTAL GROWTH, 2001, 225 (2-4) : 282 - 288
  • [40] A phase-field model for deformation twinning
    Heo, Tae Wook
    Wang, Yi
    Bhattacharya, Saswata
    Sun, Xin
    Hu, Shenyang
    Chen, Long-Qing
    PHILOSOPHICAL MAGAZINE LETTERS, 2011, 91 (02) : 110 - 121