Coarse graining for the phase-field model of fast phase transitions

被引:24
作者
Jou, D. [1 ]
Galenko, P. K. [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Catalonia, Spain
[2] Univ Jena, Fak Phys Astron, D-07743 Jena, Germany
关键词
CAHN-HILLIARD EQUATION; SPINODAL DECOMPOSITION; HYPERBOLIC MODEL; INERTIAL TERM; TIME; SOLIDIFICATION; RELAXATION; FLUCTUATIONS; EVOLUTION; DIFFUSION;
D O I
10.1103/PhysRevE.88.042151
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fast phase transitions under lack of local thermalization between successive elementary steps of the physical process are treated analytically. Non-Markovian master equations are derived for fast processes, which do not have enough time to reach energy or momentum thermalization during rapid phase change or freezing of a highly nonequilibrium system. These master equations provide a further physical basis for evolution and transport equations of the phase-field model used previously in the analyses of fast phase transitions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A sublattice phase-field model for direct CALPHAD database coupling
    Schwen, D.
    Jiang, C.
    Aagesen, L. K.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 195
  • [22] Phase-field model for deposition of pyrolytic carbon
    Ekhlakov, A.
    Dimitrov, S.
    Langhoff, T. -A.
    Schnack, E.
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (12): : 2139 - 2154
  • [23] Phase-field model with relaxation of the partition coefficient
    Kim, Seong Gyoon
    Kim, Won Tae
    Cha, Pil-Ryung
    Lee, Byeong-Joo
    Lee, Jae Sang
    Park, Jiwon
    Oh, Chang-Seok
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
  • [24] Competition of glass and crystal: Phase-field model
    Vasin, Mikhail
    Ankudinov, Vladimir
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (08) : 6798 - 6809
  • [25] Phase-field model for multicomponent alloy solidification
    Cha, PR
    Yeon, DH
    Yoon, JK
    JOURNAL OF CRYSTAL GROWTH, 2005, 274 (1-2) : 281 - 293
  • [26] Phase-field model with a reduced interface diffuseness
    Kim, SG
    Kim, WT
    Suzuki, T
    JOURNAL OF CRYSTAL GROWTH, 2004, 263 (1-4) : 620 - 628
  • [27] Phase-field model for anisotropic grain growth
    Staublin, Philip
    Mukherjee, Arnab
    Warren, James A.
    Voorhees, Peter W.
    ACTA MATERIALIA, 2022, 237
  • [28] A phase-field model for transversely isotropic ferroelectrics
    Nadgir, O.
    Dornisch, W.
    Mueller, R.
    Keip, M-A
    ARCHIVE OF APPLIED MECHANICS, 2019, 89 (06) : 1057 - 1068
  • [29] An efficient and fast adaptive numerical method for a novel phase-field model of crystal growth
    Ham, Seokjun
    Li, Yibao
    Kwak, Soobin
    Jeong, Darae
    Kim, Junseok
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 131
  • [30] Phase-field model with finite interface dissipation
    Steinbach, Ingo
    Zhang, Lijun
    Plapp, Mathis
    ACTA MATERIALIA, 2012, 60 (6-7) : 2689 - 2701