Coarse graining for the phase-field model of fast phase transitions

被引:24
|
作者
Jou, D. [1 ]
Galenko, P. K. [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Catalonia, Spain
[2] Univ Jena, Fak Phys Astron, D-07743 Jena, Germany
关键词
CAHN-HILLIARD EQUATION; SPINODAL DECOMPOSITION; HYPERBOLIC MODEL; INERTIAL TERM; TIME; SOLIDIFICATION; RELAXATION; FLUCTUATIONS; EVOLUTION; DIFFUSION;
D O I
10.1103/PhysRevE.88.042151
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fast phase transitions under lack of local thermalization between successive elementary steps of the physical process are treated analytically. Non-Markovian master equations are derived for fast processes, which do not have enough time to reach energy or momentum thermalization during rapid phase change or freezing of a highly nonequilibrium system. These master equations provide a further physical basis for evolution and transport equations of the phase-field model used previously in the analyses of fast phase transitions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] PHASE TRANSITIONS OF A PHASE FIELD MODEL
    Liu, Honghu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 883 - 894
  • [22] Displacive Phase Transitions at Large Strains: Phase-Field Theory and Simulations
    Levitas, Valery I.
    Levin, Vladimir A.
    Zingerman, Konstantin M.
    Freiman, Eugene I.
    PHYSICAL REVIEW LETTERS, 2009, 103 (02)
  • [23] COARSE-GRAINING APPROACH TO 1ST-ORDER PHASE-TRANSITIONS
    GAWEDZKI, K
    KOTECKY, R
    KUPIAINEN, A
    JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (5-6) : 701 - 724
  • [24] Coarse graining the phase space of N qubits
    Di Matteo, Olivia
    Sanchez-Soto, Luis L.
    Leuchs, Gerd
    Grassl, Markus
    PHYSICAL REVIEW A, 2017, 95 (02)
  • [25] Parallelization of phase-field model for phase transformation problem
    Xu, Y
    Yang, TL
    McDonough, JM
    Tagavi, KA
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: ADVANCED NUMERICAL METHODS SOFTWARE AND APPLICATIONS, 2004, : 213 - 218
  • [26] Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions
    Sprekels, J
    Zheng, SM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (01) : 97 - 110
  • [27] Nonlinear response and dynamical transitions in a phase-field crystal model for adsorbed overlayers
    Ramos, J. A. P.
    Granato, E.
    Ying, S. C.
    Achim, C. V.
    Elder, K. R.
    Ala-Nissila, T.
    XI LATIN AMERICAN WORKSHOP ON NONLINEAR PHENOMENA, 2010, 246
  • [28] A phase-field model for quasi-incompressible solid-liquid transitions
    Berti, Alessia
    Giorgi, Claudio
    MECCANICA, 2014, 49 (09) : 2087 - 2097
  • [29] Phase-field model of strain effect on superconducting transitions and mesoscale pattern formation
    Fortino, Daniel
    Hong, Qingguo
    Ma, Limin
    Xu, Jinchao
    Chen, Long-Qing
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 236
  • [30] ON A DOUBLY NONLINEAR PHASE-FIELD MODEL FOR FIRST-ORDER TRANSITIONS WITH MEMORY
    Berti, V.
    Fabrizio, M.
    Giorgi, C.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (3-4) : 325 - 350