Coarse graining for the phase-field model of fast phase transitions

被引:24
作者
Jou, D. [1 ]
Galenko, P. K. [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Catalonia, Spain
[2] Univ Jena, Fak Phys Astron, D-07743 Jena, Germany
关键词
CAHN-HILLIARD EQUATION; SPINODAL DECOMPOSITION; HYPERBOLIC MODEL; INERTIAL TERM; TIME; SOLIDIFICATION; RELAXATION; FLUCTUATIONS; EVOLUTION; DIFFUSION;
D O I
10.1103/PhysRevE.88.042151
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fast phase transitions under lack of local thermalization between successive elementary steps of the physical process are treated analytically. Non-Markovian master equations are derived for fast processes, which do not have enough time to reach energy or momentum thermalization during rapid phase change or freezing of a highly nonequilibrium system. These master equations provide a further physical basis for evolution and transport equations of the phase-field model used previously in the analyses of fast phase transitions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Coarse-graining for fast dynamics of order parameters in the phase-field model
    Jou, D.
    Galenko, P. K.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2113):
  • [2] Simulations for a New Phase-Field Model for Phase Transitions Driven by Configurational Forces
    Chen, Mei
    6TH ANNUAL INTERNATIONAL WORKSHOP ON MATERIALS SCIENCE AND ENGINEERING, 2020, 1622
  • [3] Phase-Field Model for Microstructure Evolution at the Mesoscopic Scale
    Steinbach, Ingo
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 43, 2013, 43 : 89 - 107
  • [4] Multigrain phase-field simulation in ferroelectrics with phase coexistences: An improved phase-field model
    Fan, Ling
    Werner, Walter
    Subotic, Swen
    Schneider, Daniel
    Hinterstein, Manuel
    Nestler, Britta
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 203
  • [5] Phase-field crystal model with a vapor phase
    Schwalbach, Edwin J.
    Warren, James A.
    Wu, Kuo-An
    Voorhees, Peter W.
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [6] Viscosity solutions to a Cauchy problem of a phase-field model for solid-solid phase transitions
    Zheng, Junzhi
    STUDIES IN APPLIED MATHEMATICS, 2020, 145 (03) : 483 - 499
  • [7] A numerical algorithm for the solution of a phase-field model of polycrystalline materials
    Dorr, M. R.
    Fattebert, J. -L.
    Wickett, M. E.
    Belak, J. F.
    Turchi, P. E. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (03) : 626 - 641
  • [8] A Temperature-Dependent Phase-Field Model for Phase Separation and Damage
    Heinemann, Christian
    Kraus, Christiane
    Rocca, Elisabetta
    Rossi, Riccarda
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 177 - 247
  • [9] Parallelization of phase-field model for phase transformation problem
    Xu, Y
    Yang, TL
    McDonough, JM
    Tagavi, KA
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: ADVANCED NUMERICAL METHODS SOFTWARE AND APPLICATIONS, 2004, : 213 - 218
  • [10] A phase-field model for quasi-incompressible solid-liquid transitions
    Berti, Alessia
    Giorgi, Claudio
    MECCANICA, 2014, 49 (09) : 2087 - 2097