Oxy-fuel combustion characteristics of pulverized-coal in a drop tube furnace

被引:50
作者
Wang, Gongliang [1 ]
Zander, Rene [1 ]
Costa, Mario [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Dept Mech Engn, P-1699 Lisbon, Portugal
关键词
Drop tube furnace; Oxy-fuel combustion; Oxidizer composition; Particle size; O-2/CO2; ATMOSPHERES; ASH DEPOSITION; IGNITION; O-2/N-2; DEVOLATILIZATION; BURNOUT; PARTICLES; PYROLYSIS; AIR;
D O I
10.1016/j.fuel.2013.07.063
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Experiments were conducted in a drop tube furnace (DTF) for a bituminous coal, two coal particle size distributions (unsieved coal with a mass mean diameter of 76 mu m and sieved coal with a mass mean diameter of 29 mu m) and three oxy-fuel atmospheres (21% O-2/79% CO2, 26% O-2/74% CO2 and 31% O-2/69% CO2) at a furnace temperature of 1100 degrees C. For comparison purposes, tests were also performed under air firing conditions. The data reported includes gas temperatures, major gas species concentration and particle burnout measured along the DTF. In addition, a number of selected final char samples were also morphologically and chemically characterized. Under oxy-fuel conditions: (i) the near burner region (NBR) temperature increases and the HC and CO concentrations decrease as the O-2 concentration in the oxidizer increases, regardless of the coal particle size; (ii) the NOx concentration levels along the DTF increase as the O-2 concentration in the oxidizer increases, regardless of the coal particle size, but, compared with air combustion, the results show that oxy-coal combustion lowers the conversion of fuel-N to NO; and (iii) the NBR burnout levels increase as the O-2 concentration in the oxidizer increases, regardless of the coal particle size. The combustion of the sieved coal yields higher NBR temperatures, lower NOx concentration and higher burnout levels along the DTF than the unsieved coal, regardless of the oxidizer composition. Carbon and nitrogen are released at about the same rate as total coal mass release, while hydrogen is released more rapidly regardless of the oxidizer composition and coal particle size. In the combustion of both unsieved and sieved coals, under oxy-fuel conditions, the final char structure becomes more porous as the O-2 concentration in the oxidizer increases. The final char elemental composition is essentially independent of the oxidizer composition, but the combustion of the unsieved coal leads to chars with higher percentages of S and lower percentages of Cl than those from the sieved coal combustion. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:452 / 460
页数:9
相关论文
共 50 条
  • [41] Thermal Analysis and Kinetics of Coal during Oxy-Fuel Combustion
    Kosowska-Golachowska, Monika
    JOURNAL OF THERMAL SCIENCE, 2017, 26 (04) : 355 - 361
  • [42] Effect of steam on the single particle ignition of solid fuels in a drop tube furnace under air and simulated oxy-fuel conditions
    Kops, Renan B.
    Pereira, Fernando M.
    Rabacal, Miriam
    Costa, Mario
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (03) : 2977 - 2985
  • [43] Study of the thermal behaviour of coal/biomass blends during oxy-fuel combustion by thermogravimetric analysis
    Contreras, M. L.
    Garcia-Frutos, F. J.
    Bahillo, A.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 123 (02) : 1643 - 1655
  • [44] Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor
    Riaza, J.
    Alvarez, L.
    Gil, M. V.
    Pevida, C.
    Pis, J. J.
    Rubiera, F.
    ENERGY, 2011, 36 (08) : 5314 - 5319
  • [45] Pulverized-Coal Deposits Collected Under Staged and Unstaged Oxy-Fuel Conditions for Four US Coals
    Stimpson, Curtis K.
    Chamberlain, Skyler
    Tree, Dale R.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2013, 185 (07) : 1098 - 1117
  • [46] Experimental and numerical investigation on nitrogen transformation in pressurized oxy-fuel combustion of pulverized coal
    Liang, Xiaorui
    Wang, Qinhui
    Luo, Zhongyang
    Eddings, Eric
    Ring, Terry
    Li, Simin
    Yu, Peng
    Yan, Jiqing
    Yang, Xudong
    Jia, Xin
    JOURNAL OF CLEANER PRODUCTION, 2021, 278
  • [47] Experimental and numerical investigation on sulfur transformation in pressurized oxy-fuel combustion of pulverized coal
    Liang, Xiaorui
    Wang, Qinhui
    Luo, Zhongyang
    Eddings, Eric
    Ring, Terry
    Li, Simin
    Lin, Junjie
    Xue, Shuang
    Han, Long
    Xie, Guilin
    APPLIED ENERGY, 2019, 253
  • [48] Quantifying the effect of CO 2 gasification on pulverized coal char oxy-fuel combustion
    Shaddix, Christopher R.
    Hecht, Ethan S.
    Gonzalo-Tirado, Cristina
    Haynes, Brian S.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (03) : 3379 - 3388
  • [49] Ash Particulate Formation from Pulverized Coal under Oxy-Fuel Combustion Conditions
    Jia, Yunlu
    Lighty, JoAnn S.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (09) : 5214 - 5221
  • [50] Prediction of lean flammability limit and flame propagation velocity for oxy-fuel fired pulverized coal combustion
    Taniguchi, Masayuki
    Shibata, Tsuyoshi
    Kobayashi, Hironobu
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2011, 33 : 3391 - 3398