Performance characterization of fiber Bragg grating thermal response in space vacuum thermal environment

被引:12
|
作者
Jiang, Junfeng [1 ]
Song, Luyao [1 ]
Liu, Tiegen [1 ]
Zhang, Jingchuan [2 ]
Liu, Kun [1 ]
Wang, Shuang [1 ]
Yin, Jinde [1 ]
Zhao, Peng [1 ]
Xie, Jihui [2 ]
Wu, Fan [1 ]
Zhang, Xuezhi [1 ]
机构
[1] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Key Lab Optoelect Informat Tech, Minist Educ, Tianjin 300072, Peoples R China
[2] Beijing Inst Spacecraft Environm Engn, Sci & Technol Reliabil & Environm Engn Lab, Beijing 100094, Peoples R China
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2013年 / 84卷 / 12期
基金
中国国家自然科学基金;
关键词
TEMPERATURE SENSORS; SYSTEM;
D O I
10.1063/1.4842295
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We investigated the fiber Bragg grating (FBG) thermal response in space vacuum thermal environment. The FBGs were packaged with 6061-T6 aluminum. The liquid nitrogen immersion experiment results show that its wavelength shift standard deviation is 0.76 pm for 217 h. The combination effect of vacuum and cryogenic temperature was studied by thermal cycling process in space environment simulator. The FBG sensors show accuracy better than 2% full scale, and the hysteresis errors are below 1%. It proves that these metal packaged FBG sensors can survive and meet the requirement of space measurement. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Enhancing Thermal Sensitivity of Fiber Bragg Grating Sensors Using Conductive Paint
    Ram, Vattam Hemanth Naga Sai
    Chalackal, Archana Thrikkaikuth
    Chattopadhyay, Somadrita
    Biswas, Palas
    Kanakambaran, Srijith
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [32] Design and Analysis of Fiber Bragg Grating TunabLe Filter Utilizing Thermal Technique
    Mohammed, Ayad Z.
    Abass, A. K.
    Ibrahim, Samar K.
    4TH ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2018 (EGM 2018), 2018, 2045
  • [33] Monitoring Thermal Effect in Femtosecond Laser Interaction With Glass by Fiber Bragg Grating
    Chen, Chao
    Yu, Yong-Sen
    Yang, Rui
    Wang, Lei
    Guo, Jing-Chun
    Chen, Qi-Dai
    Sun, Hong-Bo
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2011, 29 (14) : 2126 - 2130
  • [34] Thermal behavior of microwave-radiated hydrogen loaded fiber bragg grating
    Zhang, Bowei
    Kahrizi, Mojtaba
    ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2008, 2008, : 1382 - 1385
  • [35] Theoretical investigation of thermal stability of the center wavelength of a coated fiber Bragg grating
    Zhao, LP
    Paul, J
    Ngoi, BKA
    Fang, ZP
    OPTICAL DEVICES FOR FIBER COMMUNICATION IV, 2003, 4989 : 38 - 46
  • [36] Thermal analysis of packaging device with metal-coated fiber Bragg grating
    Xu, BX
    He, WX
    Ng, LT
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XII, 2004, 5349 : 112 - 116
  • [37] Computer control of fiber Bragg grating spectral characteristics using a thermal head
    Gupta, S
    Mizunami, T
    Shimomura, T
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (10) : 1925 - 1928
  • [38] A technique for enhancing the thermal stability of hydrogen-loaded fiber Bragg grating
    余有龙
    谭华耀
    Chinese Optics Letters, 2003, (05) : 256 - 258
  • [39] Fiber Bragg grating monitors for thermal and stress of the composite insulators in transmission lines
    Heming Deng
    Wei Cai
    You Song
    Jinsong Liu
    Christopher Redman
    QiANDong Zhuang
    Global Energy Interconnection, 2018, 1 (03) : 382 - 390
  • [40] Study on the High Temperature Annealing Process of Thermal Regeneration Fiber Bragg Grating
    Chen Huan-quan
    Dong Zhong-ji
    Chen Zhen-wei
    Zhou Jin
    Su Jun-hao
    Wang Hao
    Zheng Jia-jin
    Yu Ke-han
    Wei Wei
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42 (06) : 1934 - 1938