On Equilibrium Shape of Charged Flat Drops

被引:13
作者
Muratov, Cyrill B. [1 ]
Novaga, Matteo [2 ]
Ruffini, Berardo [3 ]
机构
[1] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[2] Univ Pisa, Dept Math, Largo B Pontecorvo 5, I-56127 Pisa, Italy
[3] Univ Montpellier, CNRS, IMAG, Pl Eugene Bataillon, F-34095 Montpellier 5, France
基金
美国国家科学基金会;
关键词
BRUNN-MINKOWSKI INEQUALITY; VOLUME-FRACTION LIMIT; ISOPERIMETRIC PROBLEM; I-LIMIT; NONEXISTENCE; CAPACITY;
D O I
10.1002/cpa.21739
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equilibrium shapes of two-dimensional charged, perfectly conducting liquid drops are governed by a geometric variational problem that involves a perimeter term modeling line tension and a capacitary term modeling Coulombic repulsion. Here we give a complete explicit solution to this variational problem. Namely, we show that at fixed total charge a ball of a particular radius is the unique global minimizer among all sufficiently regular sets in the plane. For sets whose area is also fixed, we show that balls are the only minimizers if the charge is less than or equal to a critical charge, while for larger charge minimizers do not exist. Analogous results hold for drops whose potential, rather than charge, is fixed. (C) 2018 Wiley Periodicals, Inc.
引用
收藏
页码:1049 / 1073
页数:25
相关论文
共 54 条
[1]  
Abramowitz M., 1974, Handbook of mathematical functions with formulas, graphs, and mathematical tables, DOI DOI 10.2307/2282672
[2]  
Alberti G, 2009, J AM MATH SOC, V22, P569
[3]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[4]  
AMBROSIO L, 2001, J EUR MATH SOC, V3, P39, DOI [10.1007/PL00011302, DOI 10.1007/PL00011302]
[5]   PHASE-TRANSITIONS IN LANGMUIR MONOLAYERS OF POLAR-MOLECULES [J].
ANDELMAN, D ;
BROCHARD, F ;
JOANNY, JF .
JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (06) :3673-3681
[6]   Micro- and nanoparticles via capillary flows [J].
Barrero, Antonio ;
Loscertales, Ignacio G. .
ANNUAL REVIEW OF FLUID MECHANICS, 2007, 39 :89-106
[7]   AXISYMMETRIC SHAPES AND STABILITY OF ISOLATED CHARGED DROPS [J].
BASARAN, OA ;
SCRIVEN, LE .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (05) :795-798
[8]   The mechanism of nuclear fission [J].
Bohr, N ;
Wheeler, JA .
PHYSICAL REVIEW, 1939, 56 (05) :426-450
[9]   LOCAL AND GLOBAL MINIMALITY RESULTS FOR A NONLOCAL ISOPERIMETRIC PROBLEM ON RN [J].
Bonacini, M. ;
Cristoferi, R. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) :2310-2349
[10]   CAPACITARY INEQUALITIES OF THE BRUNN-MINKOWSKI TYPE [J].
BORELL, C .
MATHEMATISCHE ANNALEN, 1983, 263 (02) :179-184