3D Droplet Microfluidic Systems for High-Throughput Biological Experimentation

被引:50
作者
Kang, Dong-Ku [1 ]
Gong, Xiuqing [1 ]
Cho, Soongwon [1 ]
Kim, Jin-young [1 ]
Edel, Joshua B. [1 ]
Chang, Soo-Ik [2 ]
Choo, Jaebum [3 ]
deMello, Andrew J. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
[2] Chungbuk Natl Univ, Dept Biochem, Cheongjoo 361763, South Korea
[3] Hanyang Univ, Dept Bionano Technol, Ansan 426791, South Korea
基金
英国生物技术与生命科学研究理事会; 新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
PROTEIN-PROTEIN INTERACTIONS; SINGLE-CELL ANALYSIS; PICOLITER-VOLUME; HODGKINS-DISEASE; CANCER; APOPTOSIS; CASPASE-3; GENERATION; GRADIENTS; MOLECULE;
D O I
10.1021/acs.analchem.5b02402
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Herein, we describe the development of a multilayer droplet microfluidic system for creating concentration gradients and generating micro droplets of varying composition for high-throughput biochemical and cell-based screening applications. The 3D droplet-based microfluidic device consists of multiple PDMS layers, which are used to generate logarithmic concentration gradient reagent profiles. Parallel flow focusing structures are used to form picoliter-sized droplets of defined volumes but of varying composition. As proof of concept, we demonstrate rapid enzymatic activity assays and drug cytotoxicity assays on bacteria. The 3D droplet-based microfluidic platform has the potential to allow for high-efficiency and high-throughput analysis, overcoming the structural limitations of single layer microfluidic systems.
引用
收藏
页码:10770 / 10778
页数:9
相关论文
共 63 条
[41]  
Niu XZ, 2011, NAT CHEM, V3, P437, DOI [10.1038/NCHEM.1046, 10.1038/nchem.1046]
[42]   Emerging roles of caspase-3 in apoptosis [J].
Porter, AG ;
Jänicke, RU .
CELL DEATH AND DIFFERENTIATION, 1999, 6 (02) :99-104
[43]   The present and future role of microfluidics in biomedical research [J].
Sackmann, Eric K. ;
Fulton, Anna L. ;
Beebe, David J. .
NATURE, 2014, 507 (7491) :181-189
[44]   A microfluidic system for controlling reaction networks in time [J].
Song, H ;
Tice, JD ;
Ismagilov, RF .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (07) :768-772
[45]   Millisecond kinetics on a microfluidic chip using nanoliters of reagents [J].
Song, H ;
Ismagilov, RF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (47) :14613-14619
[46]   High-throughput confinement and detection of single DNA molecules in aqueous microdroplets [J].
Srisa-Art, Monpichar ;
deMello, Andrew J. ;
Edel, Joshua B. .
CHEMICAL COMMUNICATIONS, 2009, (43) :6548-6550
[47]   Analysis of Protein-Protein Interactions by Using Droplet-Based Microfluidics [J].
Srisa-Art, Monpichar ;
Kang, Dong-Ku ;
Hong, Jongin ;
Park, Hyun ;
Leatherbarrow, Robin J. ;
Edel, Joshua B. ;
Chang, Soo-Ik ;
deMello, Andrew J. .
CHEMBIOCHEM, 2009, 10 (10) :1605-1611
[48]   Detection and identification of nucleic acid engineered fluorescent labels in submicrometre fluidic channels [J].
Stavis, SM ;
Edel, JB ;
Li, YG ;
Samiee, KT ;
Luo, D ;
Craighead, HG .
NANOTECHNOLOGY, 2005, 16 (07) :S314-S323
[49]  
STEFANINI M, 1985, CANCER, V55, P1931, DOI 10.1002/1097-0142(19850501)55:9<1931::AID-CNCR2820550917>3.0.CO
[50]  
2-M