3D Droplet Microfluidic Systems for High-Throughput Biological Experimentation

被引:50
作者
Kang, Dong-Ku [1 ]
Gong, Xiuqing [1 ]
Cho, Soongwon [1 ]
Kim, Jin-young [1 ]
Edel, Joshua B. [1 ]
Chang, Soo-Ik [2 ]
Choo, Jaebum [3 ]
deMello, Andrew J. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
[2] Chungbuk Natl Univ, Dept Biochem, Cheongjoo 361763, South Korea
[3] Hanyang Univ, Dept Bionano Technol, Ansan 426791, South Korea
基金
英国生物技术与生命科学研究理事会; 新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
PROTEIN-PROTEIN INTERACTIONS; SINGLE-CELL ANALYSIS; PICOLITER-VOLUME; HODGKINS-DISEASE; CANCER; APOPTOSIS; CASPASE-3; GENERATION; GRADIENTS; MOLECULE;
D O I
10.1021/acs.analchem.5b02402
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Herein, we describe the development of a multilayer droplet microfluidic system for creating concentration gradients and generating micro droplets of varying composition for high-throughput biochemical and cell-based screening applications. The 3D droplet-based microfluidic device consists of multiple PDMS layers, which are used to generate logarithmic concentration gradient reagent profiles. Parallel flow focusing structures are used to form picoliter-sized droplets of defined volumes but of varying composition. As proof of concept, we demonstrate rapid enzymatic activity assays and drug cytotoxicity assays on bacteria. The 3D droplet-based microfluidic platform has the potential to allow for high-efficiency and high-throughput analysis, overcoming the structural limitations of single layer microfluidic systems.
引用
收藏
页码:10770 / 10778
页数:9
相关论文
共 63 条
[11]   Simultaneous measurement of reactions in microdroplets filled by concentration gradients [J].
Damean, Nicolae ;
Olguin, Luis F. ;
Hollfelder, Florian ;
Abell, Chris ;
Huck, Wilhelm T. S. .
LAB ON A CHIP, 2009, 9 (12) :1707-1713
[12]   Control and detection of chemical reactions in microfluidic systems [J].
deMello, Andrew J. .
NATURE, 2006, 442 (7101) :394-402
[13]   Generation of gradients having complex shapes using microfluidic networks [J].
Dertinger, SKW ;
Chiu, DT ;
Jeon, NL ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2001, 73 (06) :1240-1246
[14]   Droplet-Based Microfluidics Enabling Impact on Drug Discovery [J].
Dressler, Oliver J. ;
Maceiczyk, Richard M. ;
Chang, Soo-Ik ;
deMello, Andrew J. .
JOURNAL OF BIOMOLECULAR SCREENING, 2014, 19 (04) :483-496
[15]   Ultrahigh-Throughput Mammalian Single-Cell Reverse-Transcriptase Polymerase Chain Reaction in Microfluidic Drops [J].
Eastburn, Dennis J. ;
Sciambi, Adam ;
Abate, Adam R. .
ANALYTICAL CHEMISTRY, 2013, 85 (16) :8016-8021
[16]   Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection [J].
Edel, JB ;
Hill, EK ;
de Mello, AJ .
ANALYST, 2001, 126 (11) :1953-1957
[17]  
Elvira KS, 2013, NAT CHEM, V5, P905, DOI [10.1038/NCHEM.1753, 10.1038/nchem.1753]
[18]   Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds [J].
Feng, Yan ;
Mitchison, Timothy J. ;
Bender, Andreas ;
Young, Daniel W. ;
Tallarico, John A. .
NATURE REVIEWS DRUG DISCOVERY, 2009, 8 (07) :567-578
[19]   Interfacing Microwells with Nanoliter Compartments: A Sampler Generating High-Resolution Concentration Gradients for Quantitative Biochemical Analyses in Droplets [J].
Gielen, Fabrice ;
Buryska, Tomas ;
Van Vliet, Liisa ;
Butz, Maren ;
Damborsky, Jiri ;
Prokop, Zbynek ;
Hollfelder, Florian .
ANALYTICAL CHEMISTRY, 2015, 87 (01) :624-632
[20]   A matter of life and death [J].
Green, DR ;
Evan, GI .
CANCER CELL, 2002, 1 (01) :19-30