A Domain-Adversarial Multi-Graph Convolutional Network for Unsupervised Domain Adaptation Rolling Bearing Fault Diagnosis

被引:5
|
作者
Li, Xinran [1 ]
Jin, Wuyin [1 ]
Xu, Xiangyang [2 ]
Yang, Hao [3 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
[2] Soochow Univ, Sch Rail Transit, Suzhou 215006, Peoples R China
[3] Nantong Univ, Sch Transportat & Civil Engn, Nantong 226019, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 12期
基金
中国国家自然科学基金;
关键词
rolling bearings; cross-domain fault diagnosis; unsupervised domain adaptation; graph convolutional networks; correlation alignment;
D O I
10.3390/sym14122654
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The transfer learning method, based on unsupervised domain adaptation (UDA), has been broadly utilized in research on fault diagnosis under variable working conditions with certain results. However, traditional UDA methods pay more attention to extracting information for the class labels and domain labels of data, ignoring the influence of data structure information on the extracted features. Therefore, we propose a domain-adversarial multi-graph convolutional network (DAMGCN) for UDA. A multi-graph convolutional network (MGCN), integrating three graph convolutional layers (multi-receptive field graph convolutional (MRFConv) layer, local extreme value convolutional (LEConv) layer, and graph attention convolutional (GATConv) layer) was used to mine data structure information. The domain discriminators and classifiers were utilized to model domain labels and class labels, respectively, and align the data structure differences through the correlation alignment (CORAL) index. The classification and feature extraction ability of the DAMGCN was significantly enhanced compared with other UDA algorithms by two example validation results, which can effectively achieve rolling bearing cross-domain fault diagnosis.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Domain Adversarial Graph Convolutional Network for Fault Diagnosis Under Variable Working Conditions
    Li, Tianfu
    Zhao, Zhibin
    Sun, Chuang
    Yan, Ruqiang
    Chen, Xuefeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [22] Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis
    Liu, Zhao-Hua
    Lu, Bi-Liang
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    Raetsch, Matthias
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (07): : 4217 - 4226
  • [23] Deep domain adaptation with adversarial idea and coral alignment for transfer fault diagnosis of rolling bearing
    Li, Ranran
    Li, Shunming
    Xu, Kun
    Lu, Jiantao
    Teng, Guangrong
    Du, Jun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (09)
  • [24] An improved multi-channel and multi-scale domain adversarial neural network for fault diagnosis of the rolling bearing
    Jin, Yongze
    Song, Xiaohao
    Yang, Yanxi
    Hei, Xinhong
    Feng, Nan
    Yang, Xubo
    CONTROL ENGINEERING PRACTICE, 2025, 154
  • [25] Rolling bearing fault diagnosis based on multi⁃scale mixed domain feature extraction and domain adaptation
    Lei Z.
    Wen G.
    Zhou Q.
    Dong S.
    Huang X.
    Zhou H.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2022, 42 (01): : 182 - 189
  • [26] Intelligent fault diagnosis method of rolling bearing based on multi-source domain fast adversarial network
    She, Daoming
    Zhang, Hongfei
    Wang, Hu
    Yan, Xiaoan
    Chen, Jin
    Li, Yaoming
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (05)
  • [27] Multi-layer adaptive convolutional neural network unsupervised domain adaptive bearing fault diagnosis method
    Cui, Jie
    Li, Yanfeng
    Zhang, Qianqian
    Wang, Zhijian
    Du, Wenhua
    Wang, Junyuan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (08)
  • [28] A motor bearing fault diagnosis model based on multi-adversarial domain adaptation
    Liu, Xin-Ming
    Zhang, Rui-Ming
    Li, Jin-Ping
    Xu, Yu-Fei
    Li, Kun
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [29] A Novel Transfer Capsule Network Based on Domain-Adversarial Training for Fault Diagnosis
    Yu Wang
    Dejun Ning
    Junzhe Lu
    Neural Processing Letters, 2022, 54 : 4171 - 4188
  • [30] A Novel Transfer Capsule Network Based on Domain-Adversarial Training for Fault Diagnosis
    Wang, Yu
    Ning, Dejun
    Lu, Junzhe
    NEURAL PROCESSING LETTERS, 2022, 54 (05) : 4171 - 4188