A Domain-Adversarial Multi-Graph Convolutional Network for Unsupervised Domain Adaptation Rolling Bearing Fault Diagnosis

被引:5
|
作者
Li, Xinran [1 ]
Jin, Wuyin [1 ]
Xu, Xiangyang [2 ]
Yang, Hao [3 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
[2] Soochow Univ, Sch Rail Transit, Suzhou 215006, Peoples R China
[3] Nantong Univ, Sch Transportat & Civil Engn, Nantong 226019, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 12期
基金
中国国家自然科学基金;
关键词
rolling bearings; cross-domain fault diagnosis; unsupervised domain adaptation; graph convolutional networks; correlation alignment;
D O I
10.3390/sym14122654
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The transfer learning method, based on unsupervised domain adaptation (UDA), has been broadly utilized in research on fault diagnosis under variable working conditions with certain results. However, traditional UDA methods pay more attention to extracting information for the class labels and domain labels of data, ignoring the influence of data structure information on the extracted features. Therefore, we propose a domain-adversarial multi-graph convolutional network (DAMGCN) for UDA. A multi-graph convolutional network (MGCN), integrating three graph convolutional layers (multi-receptive field graph convolutional (MRFConv) layer, local extreme value convolutional (LEConv) layer, and graph attention convolutional (GATConv) layer) was used to mine data structure information. The domain discriminators and classifiers were utilized to model domain labels and class labels, respectively, and align the data structure differences through the correlation alignment (CORAL) index. The classification and feature extraction ability of the DAMGCN was significantly enhanced compared with other UDA algorithms by two example validation results, which can effectively achieve rolling bearing cross-domain fault diagnosis.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Multiscale convolutional conditional domain adversarial network with channel attention for unsupervised bearing fault diagnosis
    Wang, Haomiao
    Li, Yibin
    Jiang, Mingshun
    Zhang, Faye
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2024, 238 (06) : 1123 - 1134
  • [2] Unsupervised Domain Adaptation with Joint Domain-Adversarial Reconstruction Networks
    Chen, Qian
    Du, Yuntao
    Tan, Zhiwen
    Zhang, Yi
    Wang, Chongjun
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 : 640 - 656
  • [3] Implicit Discriminator Domain Adversarial Residual Network for Cross Domain Rolling Bearing Fault Diagnosis
    Li, Zhuorui
    Ma, Jun
    Wu, Jiande
    Li, Xiang
    Wang, Xiaodong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [4] Deep convolution domain-adversarial transfer learning for fault diagnosis of rolling bearings
    Li, Feng
    Tang, Tuojiang
    Tang, Baoping
    He, Qiyuan
    MEASUREMENT, 2021, 169
  • [5] A dynamic collaborative adversarial domain adaptation network for unsupervised rotating machinery fault diagnosis
    Wang, Xin
    Jiang, Hongkai
    Mu, Mingzhe
    Dong, Yutong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 255
  • [6] Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis
    Liu, Zhao-Hua
    Lu, Bi-Liang
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    Raetsch, Matthias
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (07): : 4217 - 4226
  • [7] Multi-layer adaptive convolutional neural network unsupervised domain adaptive bearing fault diagnosis method
    Cui, Jie
    Li, Yanfeng
    Zhang, Qianqian
    Wang, Zhijian
    Du, Wenhua
    Wang, Junyuan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (08)
  • [8] Transfer Learning for Bearing Fault Diagnosis based on Graph Neural Network with Dilated KNN and Adversarial Discriminative Domain Adaptation
    Tang, Tang
    Liu, Zeyuan
    Qiu, Chuanhang
    Chen, Ming
    Yu, Ying
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (06)
  • [9] A Novel Lightweight Unsupervised Multi-branch Domain Adaptation Network for Bearing Fault Diagnosis Under Cross-Domain Conditions
    Wang, Gongxian
    Zhang, Teng
    Hu, Zhihui
    Zhang, Miao
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2023, 23 (04) : 1645 - 1662
  • [10] Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
    Wang, Xiaodong
    Liu, Feng
    SENSORS, 2020, 20 (01)