On Toeplitz-type Operators Related to Wavelets

被引:13
|
作者
Hutnik, Ondrej [1 ]
机构
[1] Safarik Univ, Fac Sci, Math Inst, Kosice 04154, Slovakia
关键词
Calderon reproducing formula; admissible wavelet; Toeplitz operator; Wick calculus; localization operator; UPPER HALF-PLANE; GROUP-REPRESENTATIONS; BERGMAN SPACES; COMMUTATORS; TRANSFORMS;
D O I
10.1007/s00020-008-1647-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be the "ax+b"-group with the left invariant Haar measure d nu and psi be a fixed real-valued admissible wavelet on L(2)(R). The structure of the space of Calderon ( wavelet) transforms W(psi) (L(2)(R)) inside L(2)(G, d nu) is described. Using this result some representations, properties and the Wick calculus of the Calderon-Toeplitz operators T(a) acting on W(psi)(L(2)(R)) whose symbols a = a(zeta) depend on v = (sic)zeta for zeta is an element of G are investigated.
引用
收藏
页码:29 / 46
页数:18
相关论文
共 50 条