Anomalous Diffusion of Single Particles in Cytoplasm

被引:102
作者
Regner, Benjamin M. [1 ,2 ]
Vucinic, Dejan [2 ]
Domnisoru, Cristina [2 ,3 ]
Bartol, Thomas M. [2 ]
Hetzer, Martin W. [4 ]
Tartakovsky, Daniel M. [1 ]
Sejnowski, Terrence J. [2 ,5 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[2] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
[3] Princeton Univ, Dept Mol Biol, Princeton Neurosci Inst, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[4] Salk Inst Biol Studies, Mol & Cell Biol Lab, La Jolla, CA 92037 USA
[5] Univ Calif San Diego, Div Biol Studies Sci, La Jolla, CA 92093 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
NON-FICKIAN TRANSPORT; HIGH-SPEED; DYNAMICS; MEMBRANE; PROTEINS; MICROSCOPY; MOLECULES; CELLS;
D O I
10.1016/j.bpj.2013.01.049
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM.
引用
收藏
页码:1652 / 1660
页数:9
相关论文
共 56 条
[1]  
Abramoff M.D., 2004, Biophotonics International, V11, P36
[2]  
[Anonymous], 1990, HDB STOCHASTIC METHO
[3]   Anomalous diffusion of proteins due to molecular crowding [J].
Banks, DS ;
Fradin, C .
BIOPHYSICAL JOURNAL, 2005, 89 (05) :2960-2971
[4]   STRANGE KINETICS of single molecules in living cells [J].
Barkai, Eli ;
Garini, Yuval ;
Metzler, Ralf .
PHYSICS TODAY, 2012, 65 (08) :29-35
[5]   Dynamics of DNA molecules in a membrane channel probed by active control techniques [J].
Bates, M ;
Burns, M ;
Meller, A .
BIOPHYSICAL JOURNAL, 2003, 84 (04) :2366-2372
[6]   Modeling non-Fickian transport in geological formations as a continuous time random walk [J].
Berkowitz, Brian ;
Cortis, Andrea ;
Dentz, Marco ;
Scher, Harvey .
REVIEWS OF GEOPHYSICS, 2006, 44 (02)
[7]   The scaling laws of human travel [J].
Brockmann, D ;
Hufnagel, L ;
Geisel, T .
NATURE, 2006, 439 (7075) :462-465
[8]   Transient Anomalous Diffusion of Telomeres in the Nucleus of Mammalian Cells [J].
Bronstein, I. ;
Israel, Y. ;
Kepten, E. ;
Mai, S. ;
Shav-Tal, Y. ;
Barkai, E. ;
Garini, Y. .
PHYSICAL REVIEW LETTERS, 2009, 103 (01)
[9]   Anomalous Dynamics of Melanosomes Driven by Myosin-V in Xenopus laevis Melanophores [J].
Brunstein, Maia ;
Bruno, Luciana ;
Desposito, Marcelo ;
Levi, Valeria .
BIOPHYSICAL JOURNAL, 2009, 97 (06) :1548-1557
[10]   High-speed, random-access fluorescence microscopy .1. High-resolution optical recording with voltage-sensitive dyes and ion indicators [J].
Bullen, A ;
Patel, SS ;
Saggau, P .
BIOPHYSICAL JOURNAL, 1997, 73 (01) :477-491