Strong convergence of additive multidimensional continued faction algorithms

被引:4
作者
Nakaishi, K [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
关键词
D O I
10.4064/aa121-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 19
页数:19
相关论文
共 7 条
[1]  
[Anonymous], 1974, Differential Equations, Dynamical Systems, and Linear Algebra
[2]   Characteristic exponents of the Jacobi Perron algorithm and of the associated map [J].
Broise-Alamichel, A ;
Guivarc'h, Y .
ANNALES DE L INSTITUT FOURIER, 2001, 51 (03) :565-+
[3]  
Brun V., 1958, TREIZIEME CONGRES MA, P45
[4]   THE QUALITY OF THE DIOPHANTINE APPROXIMATIONS FOUND BY THE JACOBI-PERRON ALGORITHM AND RELATED ALGORITHMS [J].
LAGARIAS, JC .
MONATSHEFTE FUR MATHEMATIK, 1993, 115 (04) :299-328
[5]   Ergodic and Diophantine properties of algorithms of Selmer type [J].
Schweiger, F .
ACTA ARITHMETICA, 2004, 114 (02) :99-111
[6]  
Schweiger F., 2000, Multidimensional continued fractions
[7]  
Selmer E. S., 1961, Nordisk Mat. Tidskr., V9, P37