Conductive C3NS Monolayer with Superior Properties for K Ion Batteries

被引:6
作者
Gao, Jiayu [1 ,2 ]
Tang, Meng [1 ,2 ,3 ]
Zhang, Xiaohua [1 ,2 ]
Yang, Guochun [1 ,2 ]
机构
[1] Yanshan Univ, Sch Sci, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Sch Sci, Key Lab Microstruct Mat Phys Hebei Prov, Qinhuangdao 066004, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China
关键词
METALLIC VS2 MONOLAYER; LITHIUM-ION; ANODE MATERIALS; ELECTRODE MATERIAL; NA; CHALLENGES; DIFFUSION; CAPACITY; LI; OPPORTUNITIES;
D O I
10.1021/acs.jpclett.2c03258
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
K-ion batteries (KIBs) have been considered as appealing alternatives to Li ion batteries due to the high abundance of K, their high working voltages, and allowing the use of mature LIB technology. Thus far, anode materials that can meet the rigorous requirements of KIBs are still rather rare. Here, we have identified a desirable anode material, a metallic C3NS monolayer with high stability, a high storage capacity of 980 mAh/g, a low diffusion barrier of 0.24 eV, and a low open-circuit voltage of 0.36 V, through first-principles calculations. Metallic C(3)NSKn (n = 1-3) can ensure a high electron conductivity during the charge/discharge process. Valence electrons of the N atom in a triangular bipyramid configuration favor the formation of a planar edge-sharing hexagonal C4N2 unit and delocalized pi bonding with C 2p electrons. The lone pair electrons of the S atom induce strong interactions with K atoms, facilitating storage capacity. These interesting properties make the C3NS monolayer a promising anode for KIBs.
引用
收藏
页码:12055 / 12060
页数:6
相关论文
共 74 条
[51]   Anisotropic PC6N Monolayer with Wide Band Gap and Ultrahigh Carrier Mobility [J].
Wang, Cong ;
Yu, Tong ;
Bergara, Aitor ;
Du, Xin ;
Li, Fei ;
Yang, Guochun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (07) :4330-4337
[52]   2D Nitrogen-Containing Carbon Material C5N as Potential Host Material for Lithium Polysulfides: A First-Principles Study [J].
Wang, Dandan ;
Li, Haibo ;
Zhang, Liangliang ;
Sun, Zhonghui ;
Han, DongXue ;
Niu, Li ;
Zhao, Jialong .
ADVANCED THEORY AND SIMULATIONS, 2019, 2 (02)
[53]   Carbon phosphide monolayers with superior carrier mobility [J].
Wang, Gaoxue ;
Pandey, Ravindra ;
Karna, Shashi P. .
NANOSCALE, 2016, 8 (16) :8819-8825
[54]   Crystal structure prediction via particle-swarm optimization [J].
Wang, Yanchao ;
Lv, Jian ;
Zhu, Li ;
Ma, Yanming .
PHYSICAL REVIEW B, 2010, 82 (09)
[55]   Metallic Monolayer Ta2CS2: An Anode Candidate for Li+, Na+, K+, and Ca2+ Ion Batteries [J].
Wu, Maokun ;
Xin, Baojuan ;
Yang, Wen ;
Li, Boyan ;
Dong, Hong ;
Cheng, Yahui ;
Wang, Weichao ;
Lu, Feng ;
Wang, Wei-Hua ;
Liu, Hui .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) :10695-10701
[56]   Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities [J].
Wu, Xianyong ;
Leonard, Daniel P. ;
Ji, Xiulei .
CHEMISTRY OF MATERIALS, 2017, 29 (12) :5031-5042
[57]   Advanced Carbon-Based Anodes for Potassium-Ion Batteries [J].
Wu, Xuan ;
Chen, Yanli ;
Xing, Zheng ;
Lam, Christopher Wai Kei ;
Pang, Su-Seng ;
Zhang, Wei ;
Ju, Zhicheng .
ADVANCED ENERGY MATERIALS, 2019, 9 (21)
[58]   2D material as anode for sodium ion batteries: Recent progress and perspectives [J].
Wu, Ying ;
Yu, Yan .
ENERGY STORAGE MATERIALS, 2019, 16 :323-343
[59]   A retrospective on lithium-ion batteries [J].
Xie, Jing ;
Lu, Yi-Chun .
NATURE COMMUNICATIONS, 2020, 11 (01)
[60]   Bandgap tuning of C3N monolayer: A first-principles study [J].
Xie, Liyan ;
Yang, Li ;
Ge, Wanying ;
Wang, Xijun ;
Jiang, Jun .
CHEMICAL PHYSICS, 2019, 520 :40-46