The intrinsic thermal-oxidative stabilization effect of chemically reduced graphene oxide on polypropylene

被引:58
作者
Yang, Junlong [1 ]
Huang, Yajiang [1 ]
Lv, Yadong [1 ]
Zhao, Pengfei [1 ]
Yang, Qi [1 ]
Li, Guangxian [1 ]
机构
[1] Sichuan Univ, State Key Lab Polymer Mat Engn China, Coll Polymer Sci & Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
POLYPROPYLENE/MONTMORILLONITE NANOCOMPOSITES; ISOTACTIC POLYPROPYLENE; CARBON NANOTUBES; COMPOSITES; STABILITY; NANOSHEETS; ANTIOXIDANTS; DEGRADATION; PERMEABILITY; FLAMMABILITY;
D O I
10.1039/c3ta11989k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The antioxidative effect of chemically reduced graphene oxide (rGO) on the thermal-oxidative stability of polypropylene (PP) was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). rGO was prepared by reduction of graphene oxide (GO) and characterized by atomic force microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. PP/rGO nanocomposites were then prepared without using a compatibilizer by melt blending. It was found that the thermal-oxidative degradation of PP was retarded noticeably by the rGO. The stabilization mechanism of rGO was discussed in terms of the changes in carbonyl bands and oxygen diffusion. It was proposed that the improved thermal-oxidation stability of PP/rGO nanocomposites can be attributed to the decline in both the concentration of peroxy radicals and oxygen permeability. The acceptor-like electronic property afforded by the long conjugated C=C bonds and the barrier effect of rGO were suggested to be responsible for the improved thermal-oxidation stability of PP.
引用
收藏
页码:11184 / 11191
页数:8
相关论文
共 45 条
[1]   Oxidative degradation and stabilisation of polymers [J].
Al-Malaika, S .
INTERNATIONAL MATERIALS REVIEWS, 2003, 48 (03) :165-185
[2]   Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene [J].
Bikiaris, D. ;
Vassiliou, A. ;
Chrissafis, K. ;
Paraskevopoulos, K. M. ;
Jannakoudakis, A. ;
Docoslis, A. .
POLYMER DEGRADATION AND STABILITY, 2008, 93 (05) :952-967
[3]   Chain scission distribution function for polypropylene degradation during multiple extrusions [J].
Canevarolo, SV .
POLYMER DEGRADATION AND STABILITY, 2000, 70 (01) :71-76
[4]   Novel anticorrosion coatings prepared from polyaniline/graphene composites [J].
Chang, Chi-Hao ;
Huang, Tsao-Cheng ;
Peng, Chih-Wei ;
Yeh, Tzu-Chun ;
Lu, Hsin-I ;
Hung, Wei-I ;
Weng, Chang-Jian ;
Yang, Ta-I ;
Yeh, Jui-Ming .
CARBON, 2012, 50 (14) :5044-5051
[5]   Permeability of polymer/clay nanocomposites: A review [J].
Choudalakis, G. ;
Gotsis, A. D. .
EUROPEAN POLYMER JOURNAL, 2009, 45 (04) :967-984
[6]   Crumpled Graphene Nanosheets as Highly Effective Barrier Property Enhancers [J].
Compton, Owen C. ;
Kim, Soyoung ;
Pierre, Cynthia ;
Torkelson, John M. ;
Nguyen, SonBinh T. .
ADVANCED MATERIALS, 2010, 22 (42) :4759-+
[7]   Adsorption of antioxidants by carbon blacks [J].
D'Silva, AP .
CARBON, 1998, 36 (09) :1317-1325
[8]   Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide [J].
Fan, Zhuang-Jun ;
Kai, Wang ;
Yan, Jun ;
Wei, Tong ;
Zhi, Lin-Jie ;
Feng, Jing ;
Ren, Yue-ming ;
Song, Li-Ping ;
Wei, Fei .
ACS NANO, 2011, 5 (01) :191-198
[9]   Thermal stability of polycarbonate-graphene nanocomposite foams [J].
Gedler, G. ;
Antunes, M. ;
Realinho, V. ;
Velasco, J. I. .
POLYMER DEGRADATION AND STABILITY, 2012, 97 (08) :1297-1304
[10]   A chemical route to graphene for device applications [J].
Gilje, Scott ;
Han, Song ;
Wang, Minsheng ;
Wang, Kang L. ;
Kaner, Richard B. .
NANO LETTERS, 2007, 7 (11) :3394-3398