Trigonometrically fitted explicit Numerov-type method for periodic IVPs with two frequencies

被引:21
作者
Fang, Yonglei [2 ]
Song, Yongzhong [2 ]
Wu, Xinyuan [1 ]
机构
[1] Nanjing Univ, Dept Math, State Key Lab Novel Software Technol, Nanjing 210093, Peoples R China
[2] Nanjing Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Peoples R China
基金
美国国家科学基金会;
关键词
Trigonometrically fitted Numerov-type method; Periodic IVPs with two frequencies; Oscillating problems;
D O I
10.1016/j.cpc.2008.07.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, new trigonometrically fitted Numerov type methods for the periodic initial problems are proposed. These methods are based on the original Numerov-type sixth order method with fifth internal stages motivated by Tsitouras (see [Ch. Tsitouras, Explicit Numerov type methods with reduced number of stages, Comput. Math. Appl. 45 (2003) 37-42]). Some parameters are added to these methods so that they can integrate exactly the combination of trigonometrically functions With two frequencies. Numerical stability and phase properties of the new methods are analyzed. Numerical experiments are carried Out to show the efficiency and robustness of our new methods in comparison with the well known codes proposed in the scientific literature. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:801 / 811
页数:11
相关论文
共 15 条
[1]   P-stability and exponential-fitting methods for y''=f(x, y) [J].
Coleman, JP ;
Ixaru, LG .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (02) :179-199
[2]   Order conditions for a class of two-step methods for y"=f(x,y) [J].
Coleman, JP .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (02) :197-220
[3]   A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions [J].
Fang, Yonglei ;
Wu, Xinyuan .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (03) :341-351
[4]   A class of explicit two-step hybrid methods for second-order lVPs [J].
Franco, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 187 (01) :41-57
[5]   Exponentially fitted explicit Runge-Kutta-Nystrom methods [J].
Franco, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) :1-19
[6]   Four-stage symplectic and P-stable SDIRKN methods with dispersion of high order [J].
Franco, JM ;
Gómez, I ;
Rández, L .
NUMERICAL ALGORITHMS, 2001, 26 (04) :347-363
[7]  
Kramarz L., 1980, BIT (Nordisk Tidskrift for Informationsbehandling), V20, P215, DOI 10.1007/BF01933194
[8]  
LAMBERT JD, 1976, J I MATH APPL, V18, P189
[9]   Explicit Numerov type methods with reduced number of stages [J].
Tsitouras, C .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) :37-42
[10]   Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems [J].
Van de Vyver, H .
COMPUTER PHYSICS COMMUNICATIONS, 2005, 173 (03) :115-130