Application of semiorthogonal spline wavelets and the Galerkin method to the numerical simulation of thin wire antennas

被引:1
作者
Blatov, I. A. [1 ]
Rogova, N. V. [1 ]
机构
[1] Volga State Univ Telecommun & Informat, Dept Higher Math, Samara 443090, Russia
关键词
wavelets; singular integral equations; sparse matrix techniques; thin wire antennas; Bubnov-Galerkin method; properties of coefficient matrices of systems of linear algebraic equations; TRANSFORMS;
D O I
10.1134/S0965542513050035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Bubnov-Galerkin method based on spline wavelets is used to solve singular integral equations. For the resulting systems of linear algebraic equations, the properties of their coefficient matrices are examined. Sparse approximations of these matrices are constructed by applying a cutting barrier. The results are used to numerically analyze thin wire antennas. Numerical results are presented.
引用
收藏
页码:564 / 572
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 1992, CBMS-NSF Reg. Conf. Ser. in Appl. Math
[2]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[3]  
Blatov I. A., 2002, P INT C COMP MATH 2, P356
[4]   On algebras and applications of operators with pseudosparse matrices [J].
Blatov, IA .
SIBERIAN MATHEMATICAL JOURNAL, 1996, 37 (01) :32-52
[5]  
Chui C., 1992, An introduction to wavelets, V1, DOI [10.2307/2153134, DOI 10.2307/2153134]
[6]   Compression techniques for boundary integral equations - asymptotically optimal complexity estimates [J].
Dahmen, W ;
Harbrecht, H ;
Schneider, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 43 (06) :2251-2271
[7]   Adaptive methods for boundary integral equations: Complexity and convergence estimates [J].
Dahmen, Wolfgang ;
Harbrecht, Helmut ;
Schneider, Reinhold .
MATHEMATICS OF COMPUTATION, 2007, 76 (259) :1243-1274
[8]   Matrix approximations and solvers using tensor products and non-standard wavelet transforms related to irregular grids [J].
Ford, JM ;
Oseledetst, IV ;
Tyrtyshnikov, EE .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2004, 19 (02) :185-204
[9]   Combining Kronecker product approximation with discrete wavelet transforms to solve dense, function-related linear systems [J].
Ford, JM ;
Tyrtyshnikov, EE .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (03) :961-981
[10]  
Kvasov B. N., 1981, METHODS SPLINE FUNCT