Structural design for desired eigenfrequencies and mode shapes using topology optimization

被引:67
作者
Tsai, T. D. [1 ,2 ]
Cheng, C. C. [1 ,2 ]
机构
[1] Natl Chung Cheng Univ, Adv Inst Mfg High Tech Innovat, Chiayi 621, Taiwan
[2] Natl Chung Cheng Univ, Dept Mech Engn, Chiayi 621, Taiwan
关键词
Topology optimization; SIMP; Modal assurance criterion; Mode shape; EIGENVALUES;
D O I
10.1007/s00158-012-0840-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A technique is proposed for determining the material distribution of a structure to obtain desired eigenmode shapes for problems of maximizing the fundamental eigenfrequency. The design objective is achieved using the solid isotropic method with penalization (SIMP) for topology optimization. Weighted constraints added in bound formulation are proposed to maximize the fundamental natural frequency, which provides an easy and straightforward way to prevent mode switching in the optimization process. Aside from maximizing the fundamental frequency, a method to modify existing eigenmodes to continuously evolve and assume the same shapes as the desired modes within the optimization process is proposed. The topology layout of a structure with desired eigenmodes is obtained by adding the modal assurance criterion (MAC) as additional constraints in the bound formulation optimization. Examples are presented to illustrate the proposed method, and a potential application of the proposed technique in decoupling a mechanical system is demonstrated.
引用
收藏
页码:673 / 686
页数:14
相关论文
共 50 条
[41]   Topology optimization of piezocomposite resonator for maximizing excitation strength and synthesizing desired eigenmodes [J].
Xuansheng Wang ;
Zheqi Lin ;
Yiru Ren .
Acta Mechanica Solida Sinica, 2017, 30 :531-539
[42]   Efficient Robust Topology Optimization of Eigenfrequencies Using the First-Order Second-Moment Method [J].
Krueger, Jan Christoph ;
Kriegesmann, Benedikt .
OPTIMAL DESIGN AND CONTROL OF MULTIBODY SYSTEMS, IUTAM 2022, 2024, 42 :75-84
[43]   Topology optimization of piezocomposite resonator for maximizing excitation strength and synthesizing desired eigenmodes [J].
Xuansheng Wang ;
Zheqi Lin ;
Yiru Ren .
Acta Mechanica Solida Sinica, 2017, 30 (05) :531-539
[44]   Topology optimization of piezocomposite resonator for maximizing excitation strength and synthesizing desired eigenmodes [J].
Wang, Xuansheng ;
Lin, Zheqi ;
Ren, Yiru .
ACTA MECHANICA SOLIDA SINICA, 2017, 30 (05) :531-539
[45]   Piezoresistive sensor design using topology optimization [J].
W. M. Rubio ;
Emílio C. N. Silva ;
S. Nishiwaki .
Structural and Multidisciplinary Optimization, 2008, 36 :571-583
[46]   Design of a piezoelectric actuator using topology optimization [J].
Drenckhan, J ;
Lumsdaine, A .
SMART STRUCTURES AND MATERIALS 2003: MODELING, SIGNAL PROCESSING, AND CONTROL, 2003, 5049 :414-425
[47]   Adhesive surface design using topology optimization [J].
Sylves, K. ;
Maute, K. ;
Dunn, M. L. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2009, 38 (05) :455-468
[48]   Design of radiative enclosures by using topology optimization [J].
Castro, D. A. ;
Kiyono, C. Y. ;
Silva, E. C. N. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 88 :880-890
[49]   Design of piezoelectric motors using topology optimization [J].
Silva, ECN .
SMART STRUCTURES AND MATERIALS 2001: MODELING, SIGNAL PROCESSING, AND CONTROL IN SMART STRUCTURES, 2001, 4326 :513-524
[50]   Piezoresistive sensor design using topology optimization [J].
Rubio, W. M. ;
Silva, Emilio C. N. ;
Nishiwaki, S. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2008, 36 (06) :571-583