Regularity for general functionals with double phase

被引:430
作者
Baroni, Paolo [1 ]
Colombo, Maria [2 ]
Mingione, Giuseppe [1 ]
机构
[1] Univ Parma, Dipartimento SMFI, Viale Sci 53-A, I-43124 Parma, Italy
[2] ETH, Inst Theoret Studies, Clausiusstr 47, CH-8092 Zurich, Switzerland
关键词
BOUNDARY-REGULARITY; MINIMIZERS; MINIMA; APPROXIMATION; P(X)-ENERGY; CALCULUS;
D O I
10.1007/s00526-018-1332-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove sharp regularity results for a general class of functionals of the type w (sic) integral F (x, w, Dw) dx, featuring non-standard growth conditions and non- uniform ellipticity properties. The model case is given by the double phase integral w (sic) integral b(x, w)(vertical bar Dw vertical bar(p) + a(x)vertical bar Dw vertical bar(q))dx, 1 < p < q, a(x) >= 0, with 0 < v <= b(center dot) = L. This changes its ellipticity rate according to the geometry of the level set {a(x) = 0} of the modulating coefficient a(center dot). We also present new methods and proofs that are suitable to build regularity theorems for larger classes of non-autonomous functionals. Finally, we disclose some new interpolation type effects that, as we conjecture, should draw a general phenomenon in the setting of non-uniformly elliptic problems. Such effects naturally connect with the Lavrentiev phenomenon.
引用
收藏
页数:48
相关论文
共 57 条
[31]   Sharp regularity for functionals with (p, q) growth [J].
Esposito, L ;
Leonetti, F ;
Mingione, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 204 (01) :5-55
[32]   Scalar minimizers with fractal singular sets [J].
Fonseca, I ;
Maly, J ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 172 (02) :295-307
[33]   DIFFERENTIABILITY OF MINIMA OF NON-DIFFERENTIABLE FUNCTIONALS [J].
GIAQUINTA, M ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1983, 72 (02) :285-298
[34]   Boundary Regularity under Generalized Growth Conditions [J].
Harjulehto, Petteri ;
Hasto, Peter .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2019, 38 (01) :73-96
[35]   Holder regularity of quasiminimizers under generalized growth conditions [J].
Harjulehto, Petteri ;
Hasto, Peter ;
Toivanen, Olli .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
[36]   The maximal operator on generalized Orlicz spaces [J].
Hasto, Peter A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (12) :4038-4048
[37]   The singular set of minima of integral functionals [J].
Kristensen, J ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (03) :331-398
[38]   Boundary Regularity in Variational Problems [J].
Kristensen, Jan ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (02) :369-455
[39]   Vectorial nonlinear potential theory [J].
Kuusi, Tuomo ;
Mingione, Giuseppe .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (04) :929-1004
[40]   Guide to nonlinear potential estimates [J].
Kuusi, Tuomo ;
Mingione, Giuseppe .
BULLETIN OF MATHEMATICAL SCIENCES, 2014, 4 (01) :1-82