Phase boundary propagation kinetics predominately limit the rate capability of NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) materials

被引:31
作者
Anishchenkoa, Dmitrii V. [1 ]
Zakharkin, Maxim V. [1 ,2 ]
Nikitina, Victoria A. [2 ]
Stevenson, Keith J. [2 ]
Antipov, Evgeny V. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Dept Chem, Leninsk Gory 1-3, Moscow 119991, Russia
[2] Skolkovo Inst Sci & Technol, Ctr Energy Sci & Technol, Nobel Str 3, Moscow 121205, Russia
基金
俄罗斯科学基金会;
关键词
Rate-capability; Sodium-ion battery; Rate-limiting factors; Phase transformations; Charge transfer; LITHIUM INSERTION; HOST MATERIALS; ION BATTERIES; INTERCALATION; ELECTRODES; CATHODE; NANOPARTICLES; PERFORMANCE; SEPARATION; DISCHARGE;
D O I
10.1016/j.electacta.2020.136761
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
NASICON-type Na3V2(PO4)(3) cathode materials can be regarded as promising candidates for high-power Na-ion batteries due to the observed facile kinetics of Na-ion de/intercalation. Substitution of V for Mn provides additional advantages related to the increase in the average operating potential and reduced cost of the active material. In this work, we explore the kinetics of Na+ intercalation into Mn-substituted Na3+xMnxV2-x(PO4)(3) (x = 0, 0.1, 0.5, 1) materials with a primary focus on the impact of Mn content on the rate capability of the materials. We demonstrate that Mn substitution results in quite subtle changes in bulk ionic diffusivity and charge transfer rates, while more significant impact is observed on the nucleation kinetics, which induces large hysteresis between charge and discharge curves for Mn-rich materials. The increase in hysteresis between charge and discharge curves does not limit the specific energy retention at high C-rates significantly, yet the performance losses are mainly related to the slow phase boundary propagation for biphasic processes. The Mn-rich materials, which demonstrate wider single-phase regions, are shown to outperform the unsubstituted materials in terms of rate-capability and should be preferred for high-power applications. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 52 条
[1]   Statistical kinetics of phase-transforming nanoparticles in LiFePO4 porous electrodes [J].
Bai, Peng ;
Tian, Guangyu .
ELECTROCHIMICA ACTA, 2013, 89 :644-651
[2]   Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge [J].
Bai, Peng ;
Cogswell, Daniel A. ;
Bazant, Martin Z. .
NANO LETTERS, 2011, 11 (11) :4890-4896
[3]   Simple Stochastic Model of Multiparticle Battery Electrodes Undergoing Phase Transformations [J].
Bartelt, Norman C. ;
Li, Yiyang ;
Sugar, Joshua D. ;
Fenton, Kyle ;
Kilcoyne, A. L. David ;
Shapiro, David A. ;
Tyliszczak, Tolek ;
Chueh, William C. ;
El Gabaly, Farid .
PHYSICAL REVIEW APPLIED, 2018, 10 (04)
[4]   Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics [J].
Bazant, Martin Z. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1144-1160
[5]   A NASICON-Type Positive Electrode for Na Batteries with High Energy Density: Na4MnV(PO4)3 [J].
Chen, Fan ;
Kovrugin, Vadim M. ;
David, Renald ;
Mentre, Olivier ;
Fauth, Francois ;
Chotard, Jean-Noel ;
Masquelier, Christian .
SMALL METHODS, 2019, 3 (04)
[6]   NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density [J].
Chen, Mingzhe ;
Hua, Weibo ;
Xiao, Jin ;
Cortiel, David ;
Chen, Weihua ;
Wang, Enhui ;
Hu, Zhe ;
Gu, Qinfen ;
Wang, Xiaolin ;
Indris, Sylvio ;
Chou, Shu-Lei ;
Dou, Shi-Xue .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   Delocalized Spin States in 2D Atomic Layers Realizing Enhanced Electrocatalytic Oxygen Evolution [J].
Chen, Shichuan ;
Kang, Zhixiong ;
Hu, Xin ;
Zhang, Xiaodong ;
Wang, Hui ;
Xie, Junfeng ;
Zheng, XuSheng ;
Yan, Wensheng ;
Pan, Bicai ;
Xie, Yi .
ADVANCED MATERIALS, 2017, 29 (30)
[8]   Coherency Strain and the Kinetics of Phase Separation in LiFePO4 Nanoparticles [J].
Cogswell, Daniel A. ;
Bazant, Martin Z. .
ACS NANO, 2012, 6 (03) :2215-2225
[9]   Interpreting Lithium Batteries Discharge Curves for Easy Identification of the Origin of Performance Limitations [J].
Cornut, Renaud ;
Lepage, David ;
Schougaard, Steen B. .
ELECTROCHIMICA ACTA, 2015, 162 :271-274
[10]  
Dreyer W, 2010, NAT MATER, V9, P448, DOI [10.1038/NMAT2730, 10.1038/nmat2730]