CONSTRAINT-PRESERVING ENERGY-STABLE SCHEME FOR THE 2D SIMPLIFIED ERICKSEN-LESLIE SYSTEM

被引:8
作者
Bao, Xuelian [1 ]
Chen, Rui [2 ]
Zhang, Hui [1 ,3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2021年 / 39卷 / 01期
关键词
Nematic liquid crystal; Ericksen-Leslie system; Constraint preserving; Finite element; NEMATIC LIQUID-CRYSTALS; APPROXIMATION; FLOW; EQUATIONS; DEFECTS;
D O I
10.4208/jcm.1906-m2018-0144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here we consider the numerical approximations of the 2D simplified Ericksen-Leslie system. We first rewrite the system and get a new system. For the new system, we propose an easy-to-implement time discretization scheme which preserves the sphere constraint at each node, enjoys a discrete energy law, and leads to linear and decoupled elliptic equations to be solved at each time step. A discrete maximum principle of the scheme in the finite element form is also proved. Some numerical simulations are performed to validate the scheme and simulate the dynamic motion of liquid crystals.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 33 条
[1]  
[Anonymous], 1997, SPRINGER SERIES COMP
[2]   An Overview on Numerical Analyses of Nematic Liquid Crystal Flows [J].
Badia, S. ;
Guillen-Gonzalez, F. ;
Gutierrez-Santacreu, J. V. .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2011, 18 (03) :285-313
[3]   Constraint preserving implicit finite element discretization of harmonic map flow into spheres [J].
Bartels, Soeren ;
Prohl, Andreas .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1847-1859
[4]   Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow [J].
Becker, Roland ;
Feng, Xiaobing ;
Prohl, Andreas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) :1704-1731
[5]  
Boffi D, 2013, MIXED FINITE ELEMENT, V44
[6]   A TIME-SPLITTING FINITE-ELEMENT STABLE APPROXIMATION FOR THE ERICKSEN-LESLIE EQUATIONS [J].
Cabrales, R. C. ;
Guillen-Gonzalez, F. ;
Gutierrez-Santacreu, J. V. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) :B261-B282
[7]  
CHANG KC, 1992, J DIFFER GEOM, V36, P507, DOI 10.4310/jdg/1214448751
[8]   The Kinematic Effects of the Defects in Liquid Crystal Dynamics [J].
Chen, Rui ;
Bao, Weizhu ;
Zhang, Hui .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (01) :234-249
[9]   Decoupled energy stable schemes for phase-field vesicle membrane model [J].
Chen, Rui ;
Ji, Guanghua ;
Yang, Xiaofeng ;
Zhang, Hui .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 302 :509-523
[10]   Twisted Solutions to a Simplified Ericksen-Leslie Equation [J].
Chen, Yuan ;
Kim, Soojung ;
Yu, Yong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (01) :303-336