Emergent infinite-randomness fixed points from the extensive random bipartitions of the spin-1 Affleck-Kennedy-Lieb-Tasaki topological state

被引:1
|
作者
Lu, Min [1 ]
Rao, Wen-Jia [1 ]
Narayanan, Rajesh [2 ,3 ]
Wan, Xin [1 ,4 ]
Zhang, Guang-Ming [5 ,6 ,7 ]
机构
[1] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Indian Inst Technol, Dept Phys, Madras 600036, Tamil Nadu, India
[3] Asia Pacific Ctr Theoret Phys, Pohang 790784, Gyeongbuk, South Korea
[4] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[5] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[7] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
关键词
PHASE-TRANSITION; CHAINS;
D O I
10.1103/PhysRevB.94.214427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum entanglement under an extensive bipartition can reveal the critical boundary theory of a topological phase in a parameter space. In this study we demonstrate that the infinite-randomness fixed point for spin-1/2 degrees of freedom can emerge from an extensive random bipartition of the spin-1 Affleck-Kennedy-Lieb-Tasaki chain. The nested entanglement entropy of the ground state of the reduced density matrix exhibits a logarithmic scaling with an effective central charge (c) over bar = 0.72 +/- 0.02 approximate to ln 2. We further discuss, in the language of bulk quantum entanglement, how to understand all phase boundaries and the surrounding Griffiths phases for the antiferromagnetic Heisenberg spin-1 chain with quenched disorder and dimerization.
引用
收藏
页数:6
相关论文
共 1 条
  • [1] Negativity for two blocks in the one-dimensional spin-1 Affleck-Kennedy-Lieb-Tasaki model
    Santos, Raul A.
    Korepin, V.
    Bose, Sougato
    PHYSICAL REVIEW A, 2011, 84 (06):