Quantum equivalence of massive antisymmetric tensor field models in curved space

被引:31
作者
Buchbinder, I. L. [1 ]
Kirillova, E. N. [1 ]
Pletnev, N. G. [2 ]
机构
[1] Tomsk State Pedag Univ, Dept Theoret Phys, Tomsk 634041, Russia
[2] Russian Acad Sci, Inst Math, Dept Theoret Phys, Novosibirsk 630090, Russia
来源
PHYSICAL REVIEW D | 2008年 / 78卷 / 08期
关键词
D O I
10.1103/PhysRevD.78.084024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the effective actions in massive rank 2 and rank 3 antisymmetric tensor field models in curved space-time. These models are classically equivalent to massive vector field and massive scalar field with minimal coupling to gravity, respectively. We prove that the effective action for massive rank 2 antisymmetric tensor field is exactly equal to that for massive vector field and the effective action for massive rank 3 antisymmetric tensor field is exactly equal to that for massive scalar field. The proof is based on an identity for mass-dependent zeta functions associated with Laplacians acting on p forms.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Covariant effective action for an antisymmetric tensor field [J].
Aashish, Sandeep ;
Panda, Sukanta .
PHYSICAL REVIEW D, 2018, 97 (12)
[42]   TENSOR MODELS, A QUANTUM FIELD THEORETICAL PARTICULARIZATION [J].
Tanasa, Adrian .
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2012, 13 (03) :225-234
[43]   HAMILTONIAN BRST QUANTIZATION OF AN ANTISYMMETRIC TENSOR FIELD [J].
FROLOV, SA .
THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 76 (02) :886-890
[44]   HEAT KERNEL FOR ANTISYMMETRIC TENSOR FIELD ON A DISK [J].
VASSILEVICH, DV .
PHYSICS LETTERS B, 1995, 348 (1-2) :39-43
[45]   MASSLESS EQUATION FOR AN ANTISYMMETRIC TENSOR FIELD. [J].
Loide, R.K.R. .
Soviet physics journal, 1987, 30 (09) :805-808
[46]   VANISHING OF THE CHIRAL ANOMALY FOR AN ANTISYMMETRIC TENSOR FIELD [J].
DOLGOV, AD ;
KHRIPLOVICH, IB ;
VAINSHTEIN, AI ;
ZAKHAROV, VI .
NUCLEAR PHYSICS B, 1989, 313 (01) :73-79
[47]   Inflation with antisymmetric tensor field: new candidates [J].
Aashish, Sandeep ;
Ajith, Abhijith ;
Panda, Sukanta ;
Thakur, Rahul .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (04)
[48]   On the renormalization group for the interacting massive scalar field theory in curved space [J].
de Berredo-Peixoto, G ;
Gorbar, EV ;
Shapiro, IL .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (09) :2281-2290
[49]   RENORMALIZATION OF THE QUANTUM STRESS TENSOR IN CURVED SPACE-TIME BY DIMENSIONAL REGULARIZATION [J].
BUNCH, TS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (04) :517-531
[50]   Antisymmetric tensor fields in the locally localized gravity models [J].
Oda, I .
MODERN PHYSICS LETTERS A, 2001, 16 (15) :1017-1026