Survey of single image super-resolution reconstruction

被引:63
|
作者
Li, Kai [1 ,2 ]
Yang, Shenghao [1 ,2 ]
Dong, Runting [1 ]
Wang, Xiaoying [1 ]
Huang, Jianqiang [1 ,2 ]
机构
[1] Qinghai Univ, Dept Comp Technol & Applicat, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
feature extraction; learning (artificial intelligence); remote sensing; image resolution; computer vision; interpolation; neural nets; image processing; image reconstruction; generative adversarial network; super-resolution images; popular CNN-based deep learning method; GAN-based deep learning method; LR-HR images; multiscale super-resolution reconstruction; single image super-resolution reconstruction; or multiple images; LR images; hyperspectral imaging; medical imaging; deep neural network; deep-level network; image input information; original image processing-based model; hierarchical feature-based model; network model; CONVOLUTIONAL NETWORK;
D O I
10.1049/iet-ipr.2019.1438
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image super-resolution reconstruction refers to a technique of recovering a high-resolution (HR) image (or multiple images) from a low-resolution (LR) degraded image (or multiple images). Due to the breakthrough progress in deep learning in other computer vision tasks, people try to introduce deep neural network and solve the problem of image super-resolution reconstruction by constructing a deep-level network for end-to-end training. The currently used deep learning models can divide the SISR model into four types: interpolation-based preprocessing-based model, original image processing based model, hierarchical feature-based model, and high-frequency detail-based model, or shared the network model. The current challenges for super-resolution reconstruction are mainly reflected in the actual application process, such as encountering an unknown scaling factor, losing paired LR-HR images, and so on.
引用
收藏
页码:2273 / 2290
页数:18
相关论文
共 50 条
  • [21] Regularization for super-resolution image reconstruction
    Bannore, Vivek
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 2, PROCEEDINGS, 2006, 4252 : 36 - 46
  • [22] Guaranteed Reconstruction for Image Super-resolution
    Graba, Fares
    Loquin, Kevin
    Comby, Frederic
    Strauss, Olivier
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [23] Algorithms of super-resolution image reconstruction
    Gomeztagle, Francisco
    Ponomaryov, Volodymyr
    SIXTH INT KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES/WORKSHOP ON TERAHERTZ TECHNOLOGIES, VOLS 1 AND 2, 2007, : 926 - +
  • [24] Stochastic super-resolution image reconstruction
    Tian, Jing
    Ma, Kai-Kuang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2010, 21 (03) : 232 - 244
  • [25] Super-resolution reconstruction of image sequences
    Elad, M
    Feuer, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (09) : 817 - 834
  • [26] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 : 413 - 426
  • [27] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Ren, Jin-Chang
    Xu, Xin-Ying
    Zhao, Sophia
    Xie, Gang
    Masero, Valentin
    Hussain, Amir
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (04) : 413 - 426
  • [28] Deep Learning Based Single Image Super-Resolution: A Survey
    Khanh Ha, Viet
    Ren, Jinchang
    Xu, Xinying
    Zhao, Sophia
    Xie, Gang
    Masero Vargas, Valentin
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 106 - 119
  • [29] Deep Learning Based Single Image Super-resolution:A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, (04) : 413 - 426
  • [30] Stereo Image Super-Resolution: A Survey
    Wang Yingqian
    Wang Longguang
    Liang Zhengyu
    An Wei
    Yang Jungang
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (18)