Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility

被引:103
作者
Liu, Chen [1 ]
Wong, Hoi Man [2 ]
Yeung, Kelvin Wai Kwok [2 ]
Tjong, Sie Chin [1 ]
机构
[1] City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
[2] Univ Hong Kong, Li Ka Shing Fac Med, Dept Orthoped & Traumatol, Hong Kong, Hong Kong, Peoples R China
关键词
polylactic acid; electrospinning; graphene oxide; hydroxyapatite; nanocomposites; biocompatibility; POLY(LACTIC ACID); BIODEGRADABLE POLYMERS; MECHANICAL-PROPERTIES; NANOFIBER SCAFFOLDS; PROTEIN ADSORPTION; IN-VITRO; HYDROXYAPATITE; COMPOSITES; STRENGTH; CYTOCOMPATIBILITY;
D O I
10.3390/polym8080287
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Graphene oxide (GO) and a nanohydroxyapatite rod (nHA) of good biocompatibility were incorporated into polylactic acid (PLA) through electrospinning to form nanocomposite fiber scaffolds for bone tissue engineering applications. The preparation, morphological, mechanical and thermal properties, as well as biocompatibility of electrospun PLA scaffolds reinforced with GO and/or nHA were investigated. Electron microscopic examination and image analysis showed that GO and nHA nanofillers refine the diameter of electrospun PLA fibers. Differential scanning calorimetric tests showed that nHA facilitates the crystallization process of PLA, thereby acting as a nucleating site for the PLA molecules. Tensile test results indicated that the tensile strength and elastic modulus of the electrospun PLA mat can be increased by adding 15 wt % nHA. The hybrid nanocomposite scaffold with 15 wt % nHA and 1 wt % GO fillers exhibited higher tensile strength amongst the specimens investigated. Furthermore, nHA and GO nanofillers enhanced the water uptake of PLA. Cell cultivation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase tests demonstrated that all of the nanocomposite scaffolds exhibit higher biocompatibility than the pure PLA mat, particularly for the scaffold with 15 wt % nHA and 1 wt % GO. Therefore, the novel electrospun PLA nanocomposite scaffold with 15 wt % nHA and 1 wt % GO possessing a high tensile strength and modulus, as well as excellent cell proliferation is a potential biomaterial for bone tissue engineering applications.
引用
收藏
页数:19
相关论文
共 85 条
[1]   Chitin hybrid materials reinforced with graphene oxide nanosheets: chemical and mechanical characterisation [J].
Antonio Gonzalez, Joaquin ;
Florencia Mazzobre, Maria ;
Emilia Villanueva, Maria ;
Eduardo Diaz, Luis ;
Javier Copello, Guillermo .
RSC ADVANCES, 2014, 4 (32) :16480-16488
[2]   Polyvinyl alcohol-collagen-hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level [J].
Asran, Ashraf Sh. ;
Henning, S. ;
Michler, Goerg H. .
POLYMER, 2010, 51 (04) :868-876
[3]   HYDROXYAPATITE REINFORCED POLYETHYLENE - A MECHANICALLY COMPATIBLE IMPLANT MATERIAL FOR BONE-REPLACEMENT [J].
BONFIELD, W ;
GRYNPAS, MD ;
TULLY, AE ;
BOWMAN, J ;
ABRAM, J .
BIOMATERIALS, 1981, 2 (03) :185-186
[4]   Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide-polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility [J].
Chaudhuri, Biswadeep ;
Bhadra, Debabrata ;
Moroni, Lorenzo ;
Pramanik, Krishna .
BIOFABRICATION, 2015, 7 (01)
[5]   Tuning the Mechanical Properties of Graphene Oxide Paper and Its Associated Polymer Nanocomposites by Controlling Cooperative Intersheet Hydrogen Bonding [J].
Compton, Owen C. ;
Cranford, Steven W. ;
Putz, Karl W. ;
An, Zhi ;
Brinson, L. Catherine ;
Buehler, Markus J. ;
Nguyen, SonBinh T. .
ACS NANO, 2012, 6 (03) :2008-2019
[6]   Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds [J].
Depan, D. ;
Girase, B. ;
Shah, J. S. ;
Misra, R. D. K. .
ACTA BIOMATERIALIA, 2011, 7 (09) :3432-3445
[7]   Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: Influence of HNT content and modification [J].
Dong, Yu ;
Marshall, Jordan ;
Haroosh, Hazim J. ;
Mohammadzadehmoghadam, Soheila ;
Liu, Dongyan ;
Qi, Xiaowen ;
Lau, Kin-Tak .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 76 :28-36
[8]   Graphene: A Versatile Carbon-Based Material for Bone Tissue Engineering [J].
Dubey, Nileshkumar ;
Bentini, Ricardo ;
Islam, Intekhab ;
Cao, Tong ;
Neto, Antonio Helio Castro ;
Rosa, Vinicius .
STEM CELLS INTERNATIONAL, 2015, 2015
[9]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[10]   INVESTIGATION OF STRUCTURE OF SOLUTION GROWN CRYSTALS OF LACTIDE COPOLYMERS BY MEANS OF CHEMICAL-REACTIONS [J].
FISCHER, EW ;
STERZEL, HJ ;
WEGNER, G .
KOLLOID-ZEITSCHRIFT AND ZEITSCHRIFT FUR POLYMERE, 1973, 251 (11) :980-990