Regularity results for a new class of functionals with non-standard growth conditions

被引:55
作者
Giannetti, Flavia [1 ]
di Napoli, Antonia Passarelli [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
Variational integrals; Variable exponents; Holder regularity; HIGHER INTEGRABILITY; ELLIPTIC-EQUATIONS; HOLDER CONTINUITY; MINIMIZERS; INTEGRALS; GRADIENT;
D O I
10.1016/j.jde.2012.10.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that local minimizers of the functional F(u) := integral(Omega) vertical bar Du vertical bar(p(x)) log (e + vertical bar Du vertical bar)dx are of class C-0,C-alpha for every 0 < alpha < 1, if the exponent p(x) > 1 has logarithmic modulus of continuity. Moreover, in case the exponent p(x) > 1 is a Holder continuous function, we establish that minimizers of F(u) are of class C-1,C-alpha, for some 0 < alpha < 1. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1280 / 1305
页数:26
相关论文
共 32 条
[1]   PARTIAL REGULARITY UNDER ANISOTROPIC (P, Q) GROWTH-CONDITIONS [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (01) :46-67
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]  
[Anonymous], 1987, EXAMPLE SOLUTION DIS
[4]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[5]  
[Anonymous], 1961, Convex functions and Orlicz spaces
[6]  
[Anonymous], 1997, REND I MAT U TRIESTE
[7]   Stationary electro-rheological fluids: Low order regularity for systems with discontinuous coefficients [J].
Boegelein, Verena ;
Duzaar, Frank ;
Habermann, Jens ;
Scheven, Christoph .
ADVANCES IN CALCULUS OF VARIATIONS, 2012, 5 (01) :1-57
[8]   Regularity for non-autonomous functionals with almost linear growth [J].
Breit, Dominic ;
De Maria, Bruno ;
di Napoli, Antonia Passarelli .
MANUSCRIPTA MATHEMATICA, 2011, 136 (1-2) :83-114
[9]   Higher differentiability of minimizers of convex variational integrals [J].
Carozza, Menita ;
Kristensen, Jan ;
di Napoli, Antonia Passarelli .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (03) :395-411
[10]  
Cianchi A., 1998, INT C DIFF EQ LISB 1, P306