Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation

被引:15
作者
Wang, Pan [1 ,2 ]
Tian, Bo [1 ,2 ]
Liu, Wen-Jun [1 ,2 ]
Jiang, Yan [1 ,2 ]
Xue, Yue-Shan [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
关键词
SOLITARY WAVES; PAINLEVE PROPERTY; DEVRIES EQUATION; OPTICAL-FIBERS; TRANSFORMATION; MODEL; DYNAMICS; PLASMA;
D O I
10.1140/epjd/e2012-30142-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Under investigation in this paper is a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation which describes certain atmospheric blocking phenomenon. Lax pair and infinitely many conservation laws are obtained. With the help of the Hirota method and symbolic computation, the one-, two- and three-soliton solutions are given. Besides, breather and double pole solutions are derived. Propagation characteristics and interactions of breathers and solitons are discussed analytically and graphically. Results also show that the soliton changes its type between depression and elevation periodically. Parabolic-like breather and double pole are depicted. Conditions of the depression and elevation solitons are also given.
引用
收藏
页数:10
相关论文
共 50 条
[41]   On the Korteweg-de Vries limit for the Boussinesq equation [J].
Hong, Younghun ;
Yang, Changhun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 408 :94-116
[42]   RETRACTED: In nonlinear optics, fluid mechanics, plasma physics or atmospheric science: symbolic computation on a generalized variable-coefficient Korteweg-de Vries equation (Retracted Article) [J].
Gao, Xin-Yi ;
Guo, Yong-Jiang ;
Shan, Wen-Rui .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022,
[43]   SPECTRAL STABILITY OF PERIODIC WAVE TRAINS OF THE KORTEWEG-DE VRIES/KURAMOTO-SIVASHINSKY EQUATION IN THE KORTEWEG-DE VRIES LIMIT [J].
Johnson, Mathew A. ;
Noble, Pascal ;
Rodrigues, L. Miguel ;
Zumbrun, Kevin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (03) :2159-2212
[44]   ON MASS CONCENTRATION FOR THE CRITICAL GENERALIZED KORTEWEG-DE VRIES EQUATION [J].
Pigott, B. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (02) :519-532
[45]   A system of the coupled Korteweg-De Vries equations and computerized symbolic computation [J].
Tian, B ;
Gao, YT .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (03) :361-366
[46]   Whitham theory for perturbed Korteweg-de Vries equation [J].
Kamchatnov, A. M. .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 333 :99-106
[47]   On solutions of generalized modified Korteweg-de Vries equation of the fifth order with dissipation [J].
Kudryashov, Nikolay A. .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 280 :39-45
[48]   Periodic and rational solutions of modified Korteweg-de Vries equation [J].
Chowdury, Amdad ;
Ankiewicz, Adrian ;
Akhmediev, Nail .
EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (05) :1-7
[49]   Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations [J].
Khader, M. M. ;
Saad, Khaled M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (01) :67-77
[50]   Korteweg-de Vries surface solitons at plasma interfaces [J].
Nocera, L. .
PHYSICS LETTERS A, 2006, 359 (06) :669-676