Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation

被引:15
作者
Wang, Pan [1 ,2 ]
Tian, Bo [1 ,2 ]
Liu, Wen-Jun [1 ,2 ]
Jiang, Yan [1 ,2 ]
Xue, Yue-Shan [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
关键词
SOLITARY WAVES; PAINLEVE PROPERTY; DEVRIES EQUATION; OPTICAL-FIBERS; TRANSFORMATION; MODEL; DYNAMICS; PLASMA;
D O I
10.1140/epjd/e2012-30142-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Under investigation in this paper is a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation which describes certain atmospheric blocking phenomenon. Lax pair and infinitely many conservation laws are obtained. With the help of the Hirota method and symbolic computation, the one-, two- and three-soliton solutions are given. Besides, breather and double pole solutions are derived. Propagation characteristics and interactions of breathers and solitons are discussed analytically and graphically. Results also show that the soliton changes its type between depression and elevation periodically. Parabolic-like breather and double pole are depicted. Conditions of the depression and elevation solitons are also given.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Weakly nonlinear waves in water of variable depth: Variable-coefficient Korteweg-de Vries equation [J].
Demiray, Hilmi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (06) :1747-1755
[32]   VARIABLE-COEFFICIENT MIURA TRANSFORMATIONS AND INTEGRABLE PROPERTIES FOR A GENERALIZED VARIABLE-COEFFICIENT KORTEWEG-de VRIES EQUATION FROM BOSE-EINSTEIN CONDENSATES WITH SYMBOLIC COMPUTATION [J].
Li, Juan ;
Tian, Bo ;
Meng, Xiang-Hua ;
Xu, Tao ;
Zhang, Chun-Yi ;
Zhang, Ya-Xing .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (04) :571-584
[33]   The Modulational Instability for a Generalized Korteweg-de Vries Equation [J].
Bronski, Jared C. ;
Johnson, Mathew A. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (02) :357-400
[34]   Non-linear Dynamics and Exact Solutions for the Variable-Coefficient Modified Korteweg-de Vries Equation [J].
Liu, Jiangen ;
Zhang, Yufeng .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (02) :143-149
[35]   Riesz potentials for Korteweg-de Vries solitons [J].
Varlamov, Vladimir .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (01) :41-61
[36]   Random modulation of solitons for the stochastic Korteweg-de Vries equation [J].
de Bouard, A. ;
Debussche, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (02) :251-278
[37]   Soliton fusion and fission in a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids [J].
Wang, Yu-Feng ;
Tian, Bo ;
Jiang, Yan .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 :448-456
[38]   Exit Times and Persistence of Solitons for a Stochastic Korteweg-de Vries Equation [J].
Gautier, Eric .
DYNAMICS, GAMES AND SCIENCE II, 2011, 2 :343-347
[39]   Solitons for a Forced Extended Korteweg-de Vries Equation with Variable Coefficients in Atmospheric Dynamics [J].
Li, Min ;
Xiao, Jing-Hua ;
Wang, Ming ;
Wang, Yu-Feng ;
Tian, Bo .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2013, 68 (3-4) :235-244
[40]   CONTROL OF A KORTEWEG-DE VRIES EQUATION: A TUTORIAL [J].
Cerpa, Eduardo .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2014, 4 (01) :45-99