Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation

被引:14
作者
Wang, Pan [1 ,2 ]
Tian, Bo [1 ,2 ]
Liu, Wen-Jun [1 ,2 ]
Jiang, Yan [1 ,2 ]
Xue, Yue-Shan [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
关键词
SOLITARY WAVES; PAINLEVE PROPERTY; DEVRIES EQUATION; OPTICAL-FIBERS; TRANSFORMATION; MODEL; DYNAMICS; PLASMA;
D O I
10.1140/epjd/e2012-30142-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Under investigation in this paper is a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation which describes certain atmospheric blocking phenomenon. Lax pair and infinitely many conservation laws are obtained. With the help of the Hirota method and symbolic computation, the one-, two- and three-soliton solutions are given. Besides, breather and double pole solutions are derived. Propagation characteristics and interactions of breathers and solitons are discussed analytically and graphically. Results also show that the soliton changes its type between depression and elevation periodically. Parabolic-like breather and double pole are depicted. Conditions of the depression and elevation solitons are also given.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods [J].
Carillo, Sandra ;
Schiebold, Cornelia .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
[22]   Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity [J].
Grimshaw, R. ;
Slunyaev, A. ;
Pelinovsky, E. .
CHAOS, 2010, 20 (01)
[23]   Recurrence in the Korteweg-de Vries equation? [J].
Herbst, Ben ;
Nieddu, Garrett ;
Trubatch, A. David .
NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 :1-12
[24]   Novel conditions for soliton breathers of the complex modified Korteweg-de Vries equation with variable coefficients [J].
Serkin, V. N. ;
Belyaeva, T. L. .
OPTIK, 2018, 172 :1117-1122
[25]   Reduction and analytic solutions of a variable-coefficient Korteweg-de Vries equation in a fluid, crystal or plasma [J].
Chen, Yu-Qi ;
Tian, Bo ;
Qu, Qi-Xing ;
Li, He ;
Zhao, Xue-Hui ;
Tian, He-Yuan ;
Wang, Meng .
MODERN PHYSICS LETTERS B, 2020, 34 (26)
[26]   Stability of the multi-solitons of the modified Korteweg-de Vries equation * [J].
Le Coz, Stefan ;
Wang, Zhong .
NONLINEARITY, 2021, 34 (10) :7109-7143
[27]   The Korteweg-de Vries equation on an interval [J].
Himonas, A. Alexandrou ;
Mantzavinos, Dionyssios ;
Yan, Fangchi .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)
[28]   Helical solitons in vector modified Korteweg-de Vries equations [J].
Pelinovsky, Dmitry E. ;
Stepanyants, Yury A. .
PHYSICS LETTERS A, 2018, 382 (44) :3165-3171
[29]   INTEGRABLE PROPERTIES FOR A GENERALIZED NON-ISOSPECTRAL AND VARIABLE-COEFFICIENT KORTEWEG-DE VRIES MODEL [J].
Xu, Xiao-Ge ;
Meng, Xiang-Hua ;
Sun, Fu-Wei ;
Gao, Yi-Tian .
MODERN PHYSICS LETTERS B, 2010, 24 (10) :1023-1032
[30]   Dynamics of solitons in a nonintegrable version of the modified Korteweg-de Vries equation [J].
Kurkina, O. E. ;
Kurkin, A. A. ;
Ruvinskaya, E. A. ;
Pelinovsky, E. N. ;
Soomere, T. .
JETP LETTERS, 2012, 95 (02) :91-95