Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation

被引:14
|
作者
Wang, Pan [1 ,2 ]
Tian, Bo [1 ,2 ]
Liu, Wen-Jun [1 ,2 ]
Jiang, Yan [1 ,2 ]
Xue, Yue-Shan [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
关键词
SOLITARY WAVES; PAINLEVE PROPERTY; DEVRIES EQUATION; OPTICAL-FIBERS; TRANSFORMATION; MODEL; DYNAMICS; PLASMA;
D O I
10.1140/epjd/e2012-30142-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Under investigation in this paper is a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation which describes certain atmospheric blocking phenomenon. Lax pair and infinitely many conservation laws are obtained. With the help of the Hirota method and symbolic computation, the one-, two- and three-soliton solutions are given. Besides, breather and double pole solutions are derived. Propagation characteristics and interactions of breathers and solitons are discussed analytically and graphically. Results also show that the soliton changes its type between depression and elevation periodically. Parabolic-like breather and double pole are depicted. Conditions of the depression and elevation solitons are also given.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Periodic and rational solutions of variable-coefficient modified Korteweg-de Vries equation
    Pal, Ritu
    Kaur, Harleen
    Raju, Thokala Soloman
    Kumar, C. N.
    NONLINEAR DYNAMICS, 2017, 89 (01) : 617 - 622
  • [2] On the Integrability of a Generalized Variable-Coefficient Forced Korteweg-de Vries Equation in Fluids
    Tian, Shou-Fu
    Zhang, Hong-Qing
    STUDIES IN APPLIED MATHEMATICS, 2014, 132 (03) : 212 - 246
  • [3] Soliton management for a variable-coefficient modified Korteweg-de Vries equation
    Sun, Zhi-Yuan
    Gao, Yi-Tian
    Liu, Ying
    Yu, Xin
    PHYSICAL REVIEW E, 2011, 84 (02):
  • [4] Orbital stability of a sum of solitons and breathers of the modified Korteweg-de Vries equation
    Semenov, Alexander
    NONLINEARITY, 2022, 35 (08) : 4211 - 4249
  • [5] THE GENERALIZED WRONSKIAN SOLUTIONS OF THE INTEGRABLE VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION
    Zhang, Yi
    Zhao, Hai-Qiong
    Ye, Ling-Ya
    Lv, Yi-Neng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (32): : 4615 - 4626
  • [6] Soliton solutions for a variable-coefficient Korteweg-de Vries equation in fluids and plasmas
    Jiang, Yan
    Tian, Bo
    Liu, Wen-Jun
    Sun, Kun
    Qu, Qi-Xing
    PHYSICA SCRIPTA, 2010, 82 (05)
  • [7] Soliton solutions and integrability for the generalized variable-coefficient extended Korteweg-de Vries equation in fluids
    Jiang, Yan
    Tian, Bo
    Liu, Wen-Jun
    Sun, Kun
    Li, Min
    APPLIED MATHEMATICS LETTERS, 2013, 26 (04) : 402 - 407
  • [8] ON THE EXISTENCE OF INFINITE CONSERVATION LAWS OF A VARIABLE-COEFFICIENT KORTEWEG-DE VRIES MODEL WITH SYMBOLIC COMPUTATION
    Zhu, Hong-Wu
    Tian, Bo
    MODERN PHYSICS LETTERS B, 2011, 25 (20): : 1683 - 1689
  • [9] On the uniqueness of multi-breathers of the modified Korteweg-de Vries equation
    Semenov, Alexander
    REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (04) : 1247 - 1322
  • [10] Wronskian solutions and integrability for a generalized variable-coefficient forced Korteweg-de Vries equation in fluids
    Yu, Xin
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Liu, Ying
    NONLINEAR DYNAMICS, 2012, 67 (02) : 1023 - 1030