Molecular model and ReaxFF molecular dynamics simulation of coal vitrinite pyrolysis

被引:37
|
作者
Li, Wu [1 ,2 ]
Zhu, Yan-ming [1 ]
Wang, Geoff [2 ]
Wang, Yang [1 ]
Liu, Yu [1 ]
机构
[1] China Univ Min & Technol, Key Lab Coalbed Methane Resource Reservoir Format, Minist Educ, Xuzhou 221116, Peoples R China
[2] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
基金
中国国家自然科学基金;
关键词
Coal; Molecular model; Pyrolysis; ReaxFF molecular dynamics; Vitrinite; REACTIVE FORCE-FIELD; DENSITY-FUNCTIONAL THEORY; HYDROCARBON GENERATION; COMPUTER-SIMULATION; HIGH-TEMPERATURES; BITUMINOUS COAL; MECHANISM; LIGNITE; REPRESENTATION; TRIGLYCERIDE;
D O I
10.1007/s00894-015-2738-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vitrinite in coal, the mainly generating methane maceral, plays an important role in hydrocarbon generation of coal. This study aims at obtaining products formation mechanism of vitrinite pyrolysis, and hence determining the chemical bond, molecular liquefaction activity, and reactions mechanism of methane and C2-4 during pyrolysis. The ReaxFF molecular dynamics (MD) simulation was carried out at temperature of 1500 K in order to investigate the mechanism of vitrinite pyrolysis. Initially, a minimum energy conformational structure model was constrained by a combination of elemental and carbon-13 nuclear magnetic resonance (C-13 NMR) literature data. The model analysis shows the chemical and physical parameters of vitrinite pyrolysis are broadly consistent with the experimental data. Based on the molecular model, ReaxFF MD simulations further provide information of unimolecule such as bond length, and chemical shift, and hence the total population and energy of main products. Molecules bond and pyrolysis fragments, based on active bond analyzed, revealed pyrolysis products of single vitrinite molecule with aliphatic C-C bond, especially ring and chain aliphatic as liquefaction activity. The molecular cell whose density is 0.9 g/cm(3) with lowest energy accords with the experimental density 1.33 g/cm(3). The content of main products after pyrolysis, classifying as CH4, H2O, and H-2, was changed along with the increasing temperature. The gas molecule, fragments and generation pathways of CO2, H-2, CH4, and C2H6 were also elucidated. These results show agreement with experimental observations, implying that MD simulation can provide reasonable explanation for the reaction processes involved in coal vitrinite pyrolysis. Thus the mechanism of coal hydrocarbon generation was revealed at the molecular level.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] ReaxFF-based molecular dynamics simulation of the initial pyrolysis mechanism of lignite
    Xu, Fang
    Liu, Hui
    Wang, Qing
    Pan, Shuo
    Zhao, Deng
    Liu, Qi
    Liu, Ying
    FUEL PROCESSING TECHNOLOGY, 2019, 195
  • [22] Study on pyrolysis characteristics of Ningxia high rank bituminous coal composite macerals based on ReaxFF molecular dynamics simulation
    Wang Q.
    Wang R.
    Zhang J.
    Li H.
    Bai H.
    Meitan Xuebao/Journal of the China Coal Society, 2021, 46 : 1011 - 1019
  • [23] ReaxFF molecular dynamics study on the pyrolysis process of cyclohexanone
    Arvelos, Sarah
    Abrahao, Odonirio, Jr.
    Hori, Carla Eponina
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2019, 141
  • [24] Chemical kinetics of hexamethyldisiloxane pyrolysis: A ReaxFF molecular dynamics simulation study
    Chen, Yugong
    Chen, Hao
    Wang, Jianxiang
    Huang, Yaosong
    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2022, 54 (07) : 413 - 423
  • [25] A ReaxFF-Based Molecular Dynamics Simulation of the Pyrolysis Mechanism for Polycarbonate
    Zhao, Tong
    Li, Tan
    Xin, Zhe
    Zou, Liang
    Zhang, Li
    ENERGY & FUELS, 2018, 32 (02) : 2156 - 2162
  • [26] Effect of methanol on the pyrolysis behaviour of kerogen by ReaxFF molecular dynamics simulations
    Yu, Mingyue
    Zhan, Jin-Hui
    Li, Xiang
    He, Wen
    Liu, Xiaoxing
    MOLECULAR SIMULATION, 2024, 50 (01) : 43 - 54
  • [27] Research on Kapton aerobic pyrolysis by using ReaxFF molecular dynamics simulation
    Huang, Xuwei
    Li, Qingmin
    Liu, Tao
    Han, Shuai
    Lu, Yangfei
    Wang, Zhongdong
    2016 IEEE INTERNATIONAL CONFERENCE ON HIGH VOLTAGE ENGINEERING AND APPLICATION (ICHVE), 2016,
  • [28] Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics
    Gao, Mingjie
    Li, Xiaoxia
    Guo, Li
    FUEL PROCESSING TECHNOLOGY, 2018, 178 : 197 - 205
  • [29] Study of the pyrolysis of group components of coal combined experiments and ReaxFF molecular dynamics
    Lian, Lulu
    Qin, Zhihong
    Yang, Xiaoqin
    Lin, Zhe
    Wang, Peng
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (14) : 7817 - 7828
  • [30] Atomistic insights into the pyrolysis characteristics of cis-pinane by ReaxFF molecular dynamics simulation
    Liu, Yalan
    Zhang, He
    Shao, Youxiang
    CHEMICAL PHYSICS, 2025, 593