Fractography of Aeronautical Composite Structures Submitted to Mode I Interlaminar Fracture Toughness Characterization

被引:11
作者
Candido, Geraldo Mauricio
Rezende, Mirabel Cerqueira
Donadon, Mauricio Vicente
Mueller de Almeida, Sergio Frascino
机构
[1] Divisão de Materiais - AMR, Departamento de Ciência e Tecnologia Aeroespacial, Instituto de Aeronáutica e Espaço - IAe, Praca Marechal-do-Ar Eduardo Gomes, 50, Vila das Acacias, CEP 12228-904, Sao José dos Campos, SP, Brazil
[2] Instituto Tecnológico da Aeronáutica, Italy
来源
POLIMEROS-CIENCIA E TECNOLOGIA | 2012年 / 22卷 / 01期
关键词
Fractography; polymer composites; delamination; interlaminar fracture; Mode I; FIBER-REINFORCED THERMOPLASTICS; MATRIX FRACTOGRAPHY; DELAMINATION; STRESSES; SHEAR;
D O I
10.1590/S0104-14282012005000019
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Many components of modern aircrafts are now manufactured from polymer composites. Reinforced laminates with continuous carbon fibers and modified epoxy resin are employed in primary and secondary structures to reduce weight and improve the aircraft performance. However, if a circumstantial failure happens, the complex fracture process of the laminates may involve interlaminar damage mechanisms. The delamination is the interlaminar discontinuity which may propagate catastrophically with the application of mechanical loads. The Double Cantilever Beam (DCB) is the most used method to determine the Mode I fracture toughness of structural composites. In this work samples prepared from a plain weave fabric laminate were submitted to Mode I delamination under static load at room temperature. The analysis of the delaminated surfaces was performed with scanning electron microscopy (SEM). The results show that the fracture process initiates at the resin pockets after a Teflon (R) insert and propagates along the resin rich areas at the crossing of weft and warp tows. The main fractographical aspects revealed are identified, reported and discussed.
引用
收藏
页码:41 / 53
页数:13
相关论文
共 35 条
[1]  
Almeida S. F. M., 1993, COMPOS STRUCT, V25, P287
[2]  
[Anonymous], 1999, D3171 ASTM
[3]  
*ASTM, 2001, D552894A ASTM
[4]   Challenges for composites into the next millennium - a reinforcement perspective [J].
Bannister, M .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2001, 32 (07) :901-910
[5]   INTERLAMINAR FRACTURE OF ORGANIC-MATRIX, WOVEN REINFORCEMENT COMPOSITES [J].
BASCOM, WD ;
BITNER, JL ;
MOULTON, RJ ;
SIEBERT, AR .
COMPOSITES, 1980, 11 (01) :9-18
[6]  
Candido G.M., 2000, POLIMEROS CIENCIA TE, V10, P31
[7]   Exploiting new materials and processes for higher productivity: use of advanced composite technologies [J].
Edwards, KL .
MATERIALS & DESIGN, 2004, 25 (07) :565-571
[8]   Failure mode fractographic evaluation of carbon/epoxy composites [J].
Franco, L. A. L. ;
Botelho, E. C. ;
Candido, G. M. ;
Rezende, M. C. .
MATERIA-RIO DE JANEIRO, 2009, 14 (01) :694-704
[9]  
Franco L. A. L., 2003, THESIS I TECNOLOGICO
[10]  
Greenhalgh ES, 2009, WOODHEAD PUBL MATER, P1