Noether's problem for groups of order 32

被引:27
作者
Chu, Huah [1 ]
Hu, Shou-Jen [2 ]
Kang, Ming-chang [1 ,3 ]
Prokhorov, Y. G. [4 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan
[2] Tamkang Univ, Dept Math, Taipei, Taiwan
[3] Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10764, Taiwan
[4] Moscow MV Lomonosov State Univ, Dept Algebra, Fac Math & Mech, Moscow, Russia
关键词
Noether's problem; rationality problem; small groups;
D O I
10.1016/j.jalgebra.2008.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be any field, G be a finite group. Let G act on the rational function field K(x(g): g is an element of G) by K-automorphisms defined by h . x(g) = x(hg) for any g, h is an element of G. Denote by K (G) = K(x(g): g is an element of G)(G) the fixed field. Noether's problem asks, under what situations, the fixed field K(G) will be rational (= purely transcendental) over K. Theorem. Let G be a finite group of order 32 with exponent e. If char K = 2 or K is any field containing a primitive eth root of unity, then K(G) is rational over K. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3022 / 3035
页数:14
相关论文
共 23 条
[21]  
SERRE JP, 1978, GRAD TEXTS MATH, V42
[22]  
SHAFAREVICH IR, 1991, P STEKLOV I MATH, V183, P241
[23]  
SWAN RG, 1983, E NOETHER BRYN MAWR