Two bounds of chromatic number in graphs coloring problem

被引:0
作者
Gueham, Assia [1 ,2 ]
Nagih, Anass [3 ]
Haddadene, Hacene Ait [2 ]
机构
[1] Univ Algiers, Algiers, Algeria
[2] USTHB Univ, LaROMaD Lab, Algiers 16111, Algeria
[3] Lorraine Univ, LCOMS Lab, F-57045 Metz 01, France
来源
2014 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT) | 2014年
关键词
Chromatic number; Graph Orientation; Graph Coloring;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we focus on the coloration approach and estimation of chromatic number. We propose an upper bound of a chromatic number based on the orientation algorithm described in [4]. This upper bound is improved by developing a novel coloration algorithm. Finally, we make a theoretical and empirical comparison of our bounds with Brooks's bound and Reed's conjecture [15] for class of triangle-free graphs.
引用
收藏
页码:292 / 296
页数:5
相关论文
共 17 条
[1]   Bounding χ in terms of ω and Δ for some classes of graphs [J].
Aravind, N. R. ;
Karthick, T. ;
Subramanian, C. R. .
DISCRETE MATHEMATICS, 2011, 311 (12) :911-920
[2]  
Berry L.A., 2013, DISCRETE MATH, V313
[3]  
Brooks R. L, 1941, P CAMBRIDGE PHILOS S
[4]  
Gueham A., 2012, APPL MATH SCI, V6, P5439
[5]  
Ito T., 2009, ELECT NOTES DISCRETE, V35
[6]  
Jensen T., 1995, Graph Coloring Problems, P115
[7]   THE CHROMATIC NUMBER OF GRAPHS WHICH INDUCE NEITHER K1,3 NOR K5-E [J].
KIERSTEAD, HA ;
SCHMERL, JH .
DISCRETE MATHEMATICS, 1986, 58 (03) :253-262
[8]  
King A.D., 2007, EUROPEAN J COMBINATO, V28
[9]   Bounding χ in Terms of ω and Δ for Quasi-Line Graphs [J].
King, Andrew D. ;
Reed, Bruce A. .
JOURNAL OF GRAPH THEORY, 2008, 59 (03) :215-228
[10]   Some results on Reed's Conjecture about ω, Δ, and χ with respect to α [J].
Kohl, Anja ;
Schiermeyer, Ingo .
DISCRETE MATHEMATICS, 2010, 310 (09) :1429-1438