Real exact solutions to the relativistic spinless particle with modified Rosen-Morse potential and its PT symmetry

被引:21
作者
Qiang, Wen-Chao [2 ]
Sun, Guo-Hua [1 ]
Dong, Shi-Hai [1 ]
机构
[1] Inst Politecn Nacl, Dept Fis, Escuela Super Fis & Matemat, Unidad Profes Adolfo Lopez Mateos, Mexico City 07738, DF, Mexico
[2] Xian Univ Architecture & Technol, Fac Sci, Xian 710055, Peoples R China
关键词
Bound states; relativistic spinless particle; modified Rosen-Morse potential; Nomanovski polynomials; KLEIN-GORDON EQUATION; BOUND-STATES; SCALAR; VECTOR;
D O I
10.1002/andp.201200030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The real exact solutions to the relativistic spinless particle with modified RosenMorse potential are presented. The novel issue is that the previously obtained eigenfunctions related to this type of potential in an imaginary variable i sinh (a x) (Dirac case) can be expressed by the real Nomanovski polynomials. The energy levels are calculated numerically. It is interesting to note that the energy levels first increase with the parameter V1 (V1<0) and then decrease with it. In the case of the ???? symmetric version it is found that the eigenvalues are real even though the ???? symmetric potentials are non-Hermitian.
引用
收藏
页码:360 / 365
页数:6
相关论文
共 28 条
[21]   Exact Solutions of the Klein-Gordon Equation for the Scarf-Type Potential via Nikiforov-Uvarov Method [J].
Motavalli, Hossein ;
Akbarieh, Amin Rezaei .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (05) :979-987
[22]   Any l-state solutions of the Klein-Gordon equation with the generalized Hulthen potential [J].
Qiang, Wen-Chao ;
Zhou, Run-Suo ;
Gao, Yang .
PHYSICS LETTERS A, 2007, 371 (03) :201-204
[23]   Proper quantization rule [J].
Qiang, Wen-Chao ;
Dong, Shi-Hai .
EPL, 2010, 89 (01)
[24]   Romanovski polynomials in selected physics problems [J].
Raposo, Alvaro P. ;
Weber, Hans J. ;
Castillo, David E. Alvarez ;
Kirchbach, Mariana .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2007, 5 (03) :253-284
[25]   Exact solutions of Klein-Gordon equation with scalar and vector Rosen-Morse-type potentials [J].
Soylu, A. ;
Bayrak, O. ;
Boztosun, I. .
CHINESE PHYSICS LETTERS, 2008, 25 (08) :2754-2757
[26]  
ter Haar D., 1975, Problems in Quantum Mechanics, V3
[27]   Bound states of the Klein-Gordon equation with vector and scalar Rosen-Morse-type potentials [J].
Yi, LZ ;
Diao, YF ;
Liu, JY ;
Jia, CS .
PHYSICS LETTERS A, 2004, 333 (3-4) :212-217
[28]   Bound states of the Dirac equation with vector and scalar Scarf-type potentials [J].
Zhang, XC ;
Liu, QW ;
Jia, CS ;
Wang, LZ .
PHYSICS LETTERS A, 2005, 340 (1-4) :59-69